
46070_TTLX_L nzIM.qxd 1/28/11 9:43 AM Page 1

Jones & Bartlett Learning books and products are available through most
bookstores and online booksellers. To contact Jones & Bartlett Learning directly,
call 800-832-0034, fax 978-443-8000, or visit our website, www.jblearning.com.

Substantial discounts on bulk quantities of Jones & Bartlett Learning
publications are available to corporations, professional associations, and other
qualified organizations. For details and specific discount information, contact
the special sales department at Jones & Bartlett Learning via the above contact
information or send an email to specialsales@jblearning.com.

Copyright © 2012 by Jones & Bartlett Learning, LLC

All rights reserved. No part of the material protected by this copyright may be
reproduced or utilized in any form, electronic or mechanical, including
photocopying, recording, or by any information storage and retrieval system,
without written permission from the copyright owner.

Production Credits
Publisher: Cathleen Sether
Senior Acquisitions Editor: Timothy Anderson
Senior Editorial Assistant: Stephanie Sguigna
Production Director: Amy Rose
Senior Marketing Manager: Andrea DeFronzo
Composition: Northeast Compositors, Inc.
Title Page Design: Kristin E. Parker

6048

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

World Headquarters
Jones & Bartlett

Learning
40 Tall Pine Drive
Sudbury, MA 01776
978-443-5000
info@jblearning.com
www.jblearning.com

Jones & Bartlett
Learning Canada

6339 Ormindale Way
Mississauga, Ontario
L5V 1J2
Canada

Jones & Bartlett
Learning International

Barb House, Barb Mews
London W6 7PA
United Kingdom

46070_TTLX_L nzIM.qxd 1/28/11 9:43 AM Page 2

✐

✐

“46070˙PREF˙LinzIM” — 2011/1/28 — 13:30 — page iii — #1
✐

✐

✐

✐

✐

✐

Preface

T he aim of this manual is to provide assistance to instructors using
my book An Introduction to Formal Languages and Automata, Fifth
Edition. Since this text was organized on the principle of learning
by problem solving, much of my advice relates to the exercises at

the end of each section.
It is my contention that this abstract and often difficult subject matter

can be made interesting and enjoyable to the average undergraduate stu-
dent, if mathematical formalism is downplayed and problem solving is made
the focus. This means that students learn the material and strengthen their
mathematical skills primarily by doing problems. Now this may seem rather
obvious; all textbooks contain exercises that are routinely assigned to test
and improve the students’ understanding, but what I have in mind goes a
little deeper. I consider exercises not just a supplement to the lectures, but
that to a large extent, the lectures should be a preparation for the exercises.
This implies that one needs to emphasize those issues that will help the stu-
dent to solve challenging problems, with the basic ideas presented as simply

iii

✐

✐

“46070˙PREF˙LinzIM” — 2011/1/28 — 13:30 — page iv — #2
✐

✐

✐

✐

✐

✐

iv Preface

as possible with many illustrative examples. Lengthy proofs, unnecessary
detail, or excessive mathematical rigor have no place in this approach. This
is not to say that correct arguments are irrelevant, but rather that they
should be made in connection with specific, concrete examples. Therefore,
homework has to be tightly integrated into the lectures and each exercise
should have a specific pedagogical purpose. Assignments need to be com-
posed as carefully and thoughtfully as the lectures. This is a difficult task,
but in my experience, the success of a course depends critically on how well
this is done.

There are several types of exercises, each with a particular purpose and
flavor. Some of them are straightforward drill exercises. Any student with
a basic understanding should be able to handle them. They are not always
very interesting, but they test the student’s grasp of the material, uncover
possible misunderstandings, and give everyone the satisfaction of being able
to do something.

A second type of exercise in the manual, I call “fill-in-the-details.” These
are usually omitted parts of proofs or examples whose broad outlines are
sketched in the text. Most of them are not overly difficult since all the
non-obvious points have been spelled out. For mathematically well-trained
students these exercises tend to be simple, but for those not in this cat-
egory (e.g., many computer science undergraduates) they may be a little
more difficult and are likely to be unpopular. They are useful primarily in
sharpening mathematical reasoning and formalizing skills.

The prevalent and most satisfying type of exercise involves both an
understanding of the material and an ability to carry it a step further.
These exercises are a little like puzzles whose solution involves inventiveness,
ranging from the fairly easy to the very challenging. Some of the more
difficult ones require tricks that are not easy to discover, so an occasional
hint may be in order. I have identified some of the harder problems with a
star, but this classification is highly subjective and may not be shared by
others. The best way to judge the difficulty of any problem is to look at
the discussion of the solution.

Finally, there are some exercises that take the student beyond the scope
of this course, to do some additional reading or implement a method on the
computer. These are normally quite time consuming and are suitable only
for extra-credit assignments. These exercises are identified by a double star.

For the actual solutions, I have done what I think is most helpful. When
a problem has a simple and concise answer, I give it. But there are many
cases where the solution is lengthy and uninformative. I often omit the
details on these, because I think it is easier to make up one’s own answer
than to check someone else’s. In difficult problems I outline a possible
approach, giving varying degrees of detail that I see necessary for following

✐

✐

“46070˙PREF˙LinzIM” — 2011/1/28 — 13:30 — page v — #3
✐

✐

✐

✐

✐

✐

Preface v

the argument. There are also some quite general and open-ended problems
where no particular answer can be given. In these instances, I simply tell
you why I think that such an exercise is useful.

Peter Linz

✐

✐

“46070˙PREF˙LinzIM” — 2011/1/28 — 13:30 — page vi — #4
✐

✐

✐

✐

✐

✐

✐

✐

“46070˙TOCX˙LinzIM” — 2011/1/28 — 13:31 — page vii — #1
✐

✐

✐

✐

✐

✐

Contents

1 Introduction to the Theory of Computation 1
1.1 Mathematical Preliminaries and Notation 1
1.2 Three Basic Concepts . 2
1.3 Some Applications . 4

2 Finite Automata 5
2.1 Deterministic Finite Accepters 5
2.2 Nondeterministic Finite Accepters 8
2.3 Equivalence of Deterministic and Nondeterministic Finite

Accepters . 9
2.4 Reduction of the Number of States in Finite Automata . . 11

3 Regular Languages and Grammars 11
3.1 Regular Expressions . 11
3.2 Connection Between Regular Expressions and Regular

Languages . 14
3.3 Regular Grammars . 16

4 Properties of Regular Languages 17
4.1 Closure Properties of Regular Languages 17
4.2 Elementary Questions about Regular Languages 21
4.3 Identifying Nonregular Languages 22

vii

✐

✐

“46070˙TOCX˙LinzIM” — 2011/1/28 — 13:31 — page viii — #2
✐

✐

✐

✐

✐

✐

viii Contents

5 Context-Free Languages 25
5.1 Context-Free Grammars . 25
5.2 Parsing and Ambiguity . 28
5.3 Context-Free Grammars and Programming Languages . . . 29

6 Simplification of Context-Free Grammars and
Normal Forms 29
6.1 Methods for Transforming Grammars 30
6.2 Two Important Normal Forms 32
6.3 A Membership Algorithm for Context-Free Grammars . . . 33

7 Pushdown Automata 33
7.1 Nondeterministic Pushdown Automata 33
7.2 Pushdown Automata and Context-Free Languages 36
7.3 Deterministic Pushdown Automata and Deterministic

Context-Free Languages . 38
7.4 Grammars for Deterministic Context-Free Languages . . . 39

8 Properties of Context-Free Languages 40
8.1 Two Pumping Lemmas . 40
8.2 Closure Properties and Decision Algorithms for Context-

Free Languages . 43

9 Turing Machines 45
9.1 The Standard Turing Machine 45
9.2 Combining Turing Machines for Complicated Tasks 47
9.3 Turing’s Thesis . 47

10 Other Models of Turing Machines 47
10.1 Minor Variations on the Turing Machine Theme 47
10.2 Turing Machines with More Complex Storage 48
10.3 Nondeterministic Turing Machines 50
10.4 A Universal Turing Machine 50
10.5 Linear Bounded Automata 50

11 A Hierarchy of Formal Languages and Automata 51
11.1 Recursive and Recursively Enumerable Languages 51
11.2 Unrestricted Grammars . 53
11.3 Context-Sensitive Grammars and Languages 54
11.4 The Chomsky Hierarchy . 55

✐

✐

“46070˙TOCX˙LinzIM” — 2011/1/28 — 13:31 — page ix — #3
✐

✐

✐

✐

✐

✐

Contents ix

12 Limits of Algorithmic Computation 55
12.1 Some Problems That Cannot Be Solved by Turing

Machines . 56
12.2 Undecidable Problems for Recursively Enumerable

Languages . 57
12.3 The Post Correspondence Principle 58
12.4 Undecidable Problems for Context-Free Languages 59
12.5 A Question of Efficiency . 59

13 Other Models of Computation 59
13.1 Recursive Functions . 59
13.2 Post Systems . 61
13.3 Rewriting Systems . 62

14 An Overview of Computational Complexity 63
14.1 Efficiency of Computation 63
14.2 Turing Machine Models and Complexity 63
14.3 Language Families and Complexity Classes 64
14.4 Some NP Problems . 64
14.5 Polynomial-Time Reduction 64
14.6 NP-Completeness and an Open Question 64

✐

✐

“46070˙TOCX˙LinzIM” — 2011/1/28 — 13:31 — page x — #4
✐

✐

✐

✐

✐

✐

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 1 — #1
✐

✐

✐

✐

✐

✐

Chapter 1
Introduction to the Theory of Computation

1.1 Mathematical Preliminaries and Notation

The material in this section is a prerequisite for the course. The exercises are
all of the type done in a discrete mathematics course. If students are com-
fortable with this material, one or two of these can be assigned as refresher
or as warm-up exercises. If students are struggling with this material, extra
time will be needed to remedy the situation. Working out some of these
exercises in class and reading the solved exercises should help.

1 to 14: These exercises are all fairly simple, involving arguments with
sets. Most of them can be solved by direct deduction or simple
induction. Exercise 8 establishes a result that is needed later.

15 to 21: Material on order of magnitude is needed in later chapters.

22 to 24: Some routine exercises to remind students of the terminology
of graphs.

25 to 28: Exercises in induction. Most students will have seen something
close to this in their discrete math course and should know
that induction is the way to go. Exercise 28 combines order of
magnitude notation with induction, but the exercise may be
hard for some students.

29 to 31: Simple examples of using proof by contradiction.

32: (a) and (c) are true and can be proved by contradiction. (b) is
false, with the expression in Exercise 30 a counterexample.

33 and 34: Classic examples that should be known to most students.

35: This is easier than it looks. If n is not a multiple of three, then
it must be that either n = 3m + 1 or n = 3m + 2. In the first
case, n + 2 = 3m + 3, in the second n + 4 = 3m + 6.

1

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 2 — #2
✐

✐

✐

✐

✐

✐

2 Chapter 1

1.2 Three Basic Concepts

In this section we introduce the basic concepts on which the rest of the
book is based. One could leave the section out, since everything recurs
later. But I think it is important to put this up front, to provide a context
for more specific development later. Also, it gives students an immediate
introduction to the kinds of problems they will face later. There are some
reasonably difficult and challenging exercises here.

1 to 3: Like Example 1.8, these are all obvious properties of strings and
we simply ask to make the obvious rigorous. All can be done with
induction and are useful for practicing such arguments in a simple
setting. The results are needed again and again, so it is useful to
do some of these exercises.

4: A simple drill exercise that introduces the idea of parsing (without
specifically using the term) and shows that breaking a structure
into its constituent parts requires some thought.

5: A good exercise for working with language complements and set
notation.

6: L ∪ L = Σ∗.

7: An exercise in understanding notation. There are of course no such
languages, since L∗ and (L)∗ both contain λ.

8 to 10: These are not difficult, but require careful reasoning, sometimes
involving several steps. The exercises are good tests of the under-
standing of concatenation, reversal, and star-closure of languages.

11: To get the grammars should be easy, but giving convincing argu-
ments may prove to be a little harder. In fact, expect students to
ask, “What do you mean by convincing argument?” and you will
need to set standards appropriate to your class at this point. It is
important that the issue of how much rigor and detail you expect
is settled early.

12: It is easy to see that the answer is {(ab)n : n ≥ 0}.

13: Points out that grammar does not have to derive anything, that
is, it derives ∅.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 3 — #3
✐

✐

✐

✐

✐

✐

Chapter 1 3

14: A mixed bag of exercises. (a), (b), and (c) are easy; so is (d) but it does
give trouble to students who don’t see that the language is actually{
am+3bm : m ≥ 0

}
. Parts (e) to (h) let the students discover how to

combine grammars, e.g., if S1 derives L1 and S2 derives L2, then S →
S1S2 combined with the grammars for L1 and L2 derives L1L2. This
anticipates important results for context-free grammars. Part (i) cannot
be done this way, but note that L1 − L4 = L1 ∩ L4 = ∅.

15: (a) is simple, the others get progressively harder. The answers are not
too difficult if students are comfortable working with the mod func-
tion. For example, the solution to (c) can be seen if we notice that
|w|mod 3 	= |w|mod 2 means that |w| 	= 6n or |w| 	= 6n + 1. A gram-
mar then is

S → aaaaaaS|A
A → aa|aaa|aaaa|aaaaa

16: This simple exercise introduces a language that we encounter in many
subsequent examples.

17: In spite of the similarity of this grammar to that of Example 1.13,
its verbal description is not easy. Obviously, if w ∈ L, then na(w) =
nb(w)+1. But strings in the language must have the form aw1b or bw1a,
with w1 ∈ L .

18: A set of fairly hard problems, which can be solved by the trick of count-
ing described in Example 1.12. (c) is perhaps the most difficult.

(b) S → aS |S1S| aS1.

where S1 derives the language in Example 1.13.

(c) S → aSbSa |aaSb| bSaa |SS|λ.

(d) Split into cases na (w) = nb (w) + 1 and na (w) = nb (w) − 1.

19: While conceptually not much more difficult than Exercise 18, it goes
a step further as now we need to be able to generate any number of
c’s anywhere in the string. One way to do this is to introduce a new
variable that can generate c’s anywhere, say

C → cC|λ

and then replace terminals a by CaC and b by CbC in the productions
of Exercise 18.

20: A fill-in-the-details exercise for those who stress making arguments com-
plete and precise.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 4 — #4
✐

✐

✐

✐

✐

✐

4 Chapter 1

21 to 23: These examples illustrate the briefly introduced idea of the equiv-
alence of grammars. It is important that the students realize
early that any given language can have many grammars. The
two grammars in Exercise 21 are not equivalent, although some
will claim that both generate {anbn}, forgetting about the empty
string. The exercise points out that the empty string is not “noth-
ing.” In Exercise 22, note that S ⇒ SSS can be replaced by
S ⇒ SS ⇒ SSS, so the grammars are equivalent. A counterex-
ample for 23 is aa.

1.3 Some Applications

This section is optional; its purpose is to hint at applications and relate the
material to something in the student’s previous experience. It also intro-
duces finite automata in an informal way. Exercises 1 to 6 are suitable for
those with a background and interest in programming languages. Exercises
8 to 14 deal with some fundamental hardware issues familiar to most com-
puter science students from a course in computer organization. Generally
these exercises are not hard.

7: A more prosaic way of stating the problem is: no M can follow the first
D, no D can follow the first C, etc. The resulting automaton is a little
large, but easy in principle.

8: This introduces an important idea, namely how an automaton can re-
member things. For example, if an a1 is read, it will have to be reproduced
later, so the automaton has to remember. This can be done by labeling
the state with the appropriate information. Part of the automaton will
then look like

λ
a1/λ

a2/a1

a3/a1

a1

a2

a3

9: A simple extension of the idea in Exercise 8.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 5 — #5
✐

✐

✐

✐

✐

✐

Chapter 2 5

10: The automaton must complement each bit, add one to the lower
order bit, and propagate a carry. Students will probably need to
try a few examples by hand before discovering an answer such as
the one below.

1/1

0/0 0/1

1/0

11: A fairly simple solved exercise.

12 to 14: These are similar in difficulty to Exercise 10. They all require
that the automaton remember some of the previously encoun-
tered bits.

15: This is simple as long as the higher order bits are given first.
Think about how the problem could be solved if the lower order
bits are seen first.

Chapter 2
Finite Automata

2.1 Deterministic Finite Accepters

1: A drill exercise to see if students can follow the workings of a dfa.

2: Some of these languages are the same as Exercise 11, Section
1.2, so the student can see the parallels between grammars and
automata solutions. Since this is a very fundamental issue, this is
a good introductory problem. All the exercises are relatively easy
if mnemonic labeling is used.

3 and 4: These two exercises let the student discover closure of regular
languages under complementation. This is discussed later in the
treatment of closure, so this gives a preview of things to come. It
also shows that the dfa for L can be constructed by complementing
the state set of the dfa for L. The only difficulty in the exercises
is that they require formal arguments, so it is a good exercise for
practicing mathematical reasoning.

5 and 6: Easy exercises.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 6 — #6
✐

✐

✐

✐

✐

✐

6 Chapter 2

7: Similar to Exercise 15 in Section 1.2. The answers all involve simple
modular counting by an automaton. Once students grasp this principle,
all parts are easy.

8: May be quite hard until the student gets into the habit of using mnemonic
labels. If each state is labeled with the appropriate number of a’s, the
solution for part (a) below follows directly. Solutions to the other two
parts are comparable in difficulty.

a

bb

b b b
b

a a a

a

ab
a, b

bb bbbb

aaaa

b

a

bbb

aaaa aa

t

bb

aa

λ

9: Continues the theme of Exercise 8, but is on the whole a little easier.
After this exercise, the students should be convinced of the usefulness
of mnemonic labeling. Note that (a) and (b) are not the same problem.

10: This is a difficult problem for most students. Many will try to find some
kind of repeated pattern. The trick is to label the states with the value
(mod 5) of the partial bit string and find the rule for taking care of the
next bit by

(2n + 1) mod 5 = (2n mod 5 + 1) mod 5

leading to the solution shown below.

1 0 1 0

10

0 1 2

0
1

3

1 0

4

Don’t expect everyone to discover this, so a hint may be appropriate
(or let them try a bit first before giving directions).

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 7 — #7
✐

✐

✐

✐

✐

✐

Chapter 2 7

11 to 15: All fairly easy exercises, reinforcing the idea that a language is
regular if we can find a dfa for it.

16: A simple problem, pointing out an application in programming
languages.

17 and 18: These exercises look easier than they are. They introduce the
important technique of a general construction. Given any dfa
for L, how do we construct from it a dfa for L − {λ}? The
temptation is to say that if λ ∈ L, then q0 must be in the
final state set F , so just construct a new automaton with final
state set F − {q0}. But this is not correct, since there may be
a nonempty string w ∈ L, such that δ∗ (q0, w) = q0. To get
around this difficulty, we create a new initial state p0 and new
transitions

δ (p0, a) = qj

for all original
δ (q0, a) = qj .

This is intuitively reasonable, but it has to be spelled out in
detail, so a formal argument will still be hard. However, as it
is one of the simplest cases of justifying a construction, asking
for a proof that the construction works is a good introduction
to this sort of thing.

Note that these exercises become much easier after nfa’s have
been introduced.

19: A good exercise in inductive reasoning as well as in handling
concise, but not very transparent, mathematical notation.

20 and 21: These involve generalization of the idea introduced in Example
2.6 and should not prove too difficult.

22: Generalizes the above idea in Exercises 20 and 21 a little more
and points to closure properties to come. Gets the student to
think ahead about issues that will be treated in more detail
later. Not too hard for students with the ability to generalize,
although the formal proof may be challenging.

23: An exercise for reasoning with transition graphs. The answer
is intuitively easy to see, but may be troublesome if you are
asking for a formal proof.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 8 — #8
✐

✐

✐

✐

✐

✐

8 Chapter 2

24: Constructions of this type are very fundamental in subsequent discus-
sions, but at this point the student has no experience with them, so
this will be hard. But if the student can discover the idea behind the
solution, later material will make much more sense. Perhaps a hint such
as “if va ∈ L, then δ∗ (va) ∈ F . But v ∈ truncate (L), so that δ∗ (v)
must be a final state for the new automaton” is worthwhile. This will
probably give the construction away, but any kind of formal proof will
still be hard for most.

25: A simple exercise that has many different solutions.

2.2 Nondeterministic Finite Accepters

1: A “fill-in-the-details” exercise, of which there are a number through-
out the text. Such exercises tend to be unexciting to many stu-
dents and you may not want to assign a lot of them. An occasional
one, though, is appropriate. Having to reason about fine points
gives the student a better understanding of the result. It will also
test the students’ ability to go from an intuitive understanding of
a proof to a precise sequence of logical steps.

2: An exercise foreshadowing the dfa/nfa equivalence. An answer
such as

a a a a
a

a

is not entirely trivial for students at this point.

3: This exercise brings out the connection between complementing
the final state set and the complement of a language.

4 to 6: Routine drill exercises in understanding and following transition
graphs. Also reinforces the point that δ∗ is a set.

7 and 8: These require solutions with a bound on the number of states.
Without such bounds the exercises would be trivial, but even with
them they are not too hard. The main virtue of this set is that it
gets the student to play around with various options. A solution
to 7 is easy. Exercise 8 is solved.

9: The answer is pretty obvious, but how can one defend such a
conclusion? A question without a very tidy answer, but it gets
the student to think.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 9 — #9
✐

✐

✐

✐

✐

✐

Chapter 2 9

10: The answer to part (b) is yes, since L = {bmak : m ≥ 0, k ≥ 0}.

11: An easy exercise.

12: A routine, but worthwhile exercise, since some students get confused
tracing through an nfa.

13: Clearly, the language accepted is {an : n ≥ 1}. Assuming Σ = {a}, the
complement consists of the empty string only.

14: An easy exercise that requires a simple modification of Figure 2.8.

15: L = {λ}.

16: Can be a little hard, mainly because of the unusual nature of the ques-
tion. It is easy to come up with an incorrect result. For the solution,
see the solved exercises.

17: Again the obvious answer is no, but this is not so easy to defend. One
way to argue is that for a dfa to accept {a}∗, its initial state must be
a final state. Removing any edge will not change this, so the resulting
automaton still accepts λ.

18: A worthwhile exercise about a generalization of an nfa. Students some-
times ask why in the definition of a finite automaton we have only one
initial state, but may have a number of final states. This kind of exer-
cise shows the somewhat arbitrary nature of the definition and points
out that the restriction is inconsequential.

19: No, if q0 ∈ F , introduce p0 as in the exercise above.

20: Exercise in reasoning with transition graphs. Makes sense intuitively,
but don’t expect everyone to produce an airtight argument.

21: This introduces a useful concept, an incomplete dfa (which some authors
use as the actual definition of a dfa). Using incomplete dfa’s can simplify
many problems, so the exercise is worthwhile.

2.3 Equivalence of Deterministic and Nondeterministic
Finite Accepters

1: Straightforward, drill exercise. For a simple answer, note that the
accepted language is {an : n ≥ 1}.

2 and 3: These are easy drill exercises.

4: A “fill-in-the-details” exercise to supply some material omitted in
the text.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 10 — #10
✐

✐

✐

✐

✐

✐

10 Chapter 2

5: Yes, it is true. A formal argument is not hard. By definition, w ∈ L if
and only if δ∗ (q0, w)∩F 	= ∅. Consequently, if δ∗ (q0, w)∩F = ∅, then
w ∈ L.

6: Not true, although some students will find this counterintuitive. This
exercise makes a good contrast with Exercise 5 above and Exercise 4,
Section 2.1. If the students understand this, they are on their way to
understanding the difficult idea of nondeterminism.

7: Create a new final state and connect it to the old ones by λ-transitions.
This does not work with dfa’s, as explained in the solution.

8: Does not follow from Exercise 7 since λ-transitions are forbidden. The
answer requires some thinking. A solution is provided. This is a specific
case of the general construction in the next exercise.

9: This is a troublesome construction. Start with dfa, add a single final
state with λ-transitions, then remove the λ-transitions as sketched be-
low.

a

b

λ

λ

a

a

b

b

10: Introduce a single initial state, and connect it to previous ones via λ-
transitions. Then convert back to a dfa and note that the construction
of Theorem 2.2 retains the single initial state.

11: An instructive and easy exercise, establishing a result needed on occa-
sion. Without this exercise some students may not realize that all finite
languages are regular.

12: Another exercise foreshadowing closure results. The construction is
easy: reverse final and initial states and all arrows. Then use the con-
clusion of Exercise 18, Section 2.2.

13: Once you see that the language is {0n : n ≥ 1} ∪ {0n1 : n ≥ 0}, the
problem is trivial.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 11 — #11
✐

✐

✐

✐

✐

✐

Chapter 3 11

14: A difficult problem with a solution in the solved exercises.

15: Not obvious, but should be manageable after one or two similar prob-
lems. Find the set of states Q2 for which there is a path of length two
from the initial state. Introduce a new initial state q̂0 and λ-transitions
from q̂0 to the states in Q2.

2.4 Reduction of the Number of States in Finite Automata

1: This is an easy drill exercise.

2: Easy to construct dfa’s; the rest is routine.

3: This is an important point that may have escaped notice: in minimiza-
tion, the original and final automata must be dfa’s. So things will work
as stated only if reduce produces a dfa. This is the case because each i
can occur in only one label of M̂ .

4: Another easy drill.

5: Every walk from an initial to a final state must have length at least n.
Thus all simple paths have length at least n, and consequently there
must be at least n + 1 vertices.

6: Not obvious, but the solution is given.

7: A test of students’ ability to work with equivalence relations.

8: This exercise asks the student to fill in some of the details that were
omitted in the text.

9: Again, a test of understanding equivalences involving a short proof by
contradiction.

10: While the uniqueness question is not addressed in the text, it is worth
mentioning. But discovering a proof is probably beyond the capability
of most students, so the best you can do is to point to the literature
(e.g. Denning, Dennis and Qualitz 1978) for help.

Chapter 3
Regular Languages and Grammars

3.1 Regular Expressions

The material in this section lends itself very well for problem-solving exer-
cises. The ones given here range from simple to moderately difficult. It is
easy to make up similar problems, but one needs to be careful. Some very
innocent looking questions can be quite difficult. It appears to be harder for
most students to work with regular expressions than with finite automata.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 12 — #12
✐

✐

✐

✐

✐

✐

12 Chapter 3

1: A routine drill exercise.

2: Yes.

3: Since 1∗ includes λ, this is also true.

4: aaaa∗(bb)∗

5: Easy, if you split this into (n and m both even) or (n and m both odd).
An answer is

(aa)∗ (bb)∗ + a (aa)∗ b (bb)∗

6: (a) and (b) are easy, since the solution can be written down immediately,
e.g.,

r = (λ + a + aa + aaa)(λ + b + bb + bbb)

for (b). To solve (c) and (d), split the problem into several cases, such
as n < 4, m ≤ 3, n ≥ 4, m > 3, etc. We must also include strings in
which a can follow b.

7: Uncovers some notational subtleties that may have escaped attention.
Particularly, the concatenation of a language with the empty set is
often misunderstood (of course, it is not really a very important point).
Answers: (∅∗)∗ = {λ}, a∅ = ∅.

8: All strings of the form w1bw2, where w1 and w2 are composed of an
even number of a’s, or w1 and w2 consist of an odd number of a’s.

9: Exercise to see how to get LR by reversing the regular expression. Leads
to the more general question in Exercise 21.

10: Split into three cases: n ≥ 1, m ≥ 3; n ≥ 2, m ≥ 2; and n ≥ 3, m ≥ 1.

11: Easy problem, with answer r = abbbb∗ (a + b)∗.

12: A little hard to see. The part of getting an odd number of a’s or an even
number of b’s is easy. But we also must include strings where an a can
follow a b. An answer is (a + b)∗ ba (a + b)∗ + a (aa)∗ b∗ + a∗ (bb)∗ + λ,
but many quite different expressions are possible.

13: Enumerate all strings of length two to get something like aa (a + b)∗ aa+
ab (a + b)∗ ab + · · · .

14: A problem in unraveling notation. The simple answer is (a + b)∗.

15: Examples 3.5 and 3.6 give a hint. A short answer is (1 + 01)∗ 00 (1 + 10)∗,
but students are likely to come up with many different solutions.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 13 — #13
✐

✐

✐

✐

✐

✐

Chapter 3 13

16: A sequence of simple to harder problems. (a) is easy, (b) a little harder
since it should be broken into parts—no a’s, exactly one a, etc. (e) is
quite hard since it involves putting several ideas together, for example
runs of a’s of length 3n, separated by substrings with no runs of a’s. To
get started, look at

r = r1 (baaabr1baaab)
∗
r1,

where r1 generates all strings that have no runs of a’s. This gives a
subset of what we want, but several other parts have to be considered.

17: These again increase in difficulty, but on the whole are a little harder
than Exercise 14. (f) can be rather tedious and frustrating. First look
at

r = (r1100r1)
∗
,

where r1 is a regular expression for strings not containing 10. Unfortu-
nately, this does not cover the many special cases, such as 1∗, and it
takes some effort to sort this all out.

18: (a) is not hard, (b) perhaps a little harder with answer b∗+(b∗ab∗ab∗ab∗)∗.
(c) can be solved along these lines, but is longer since it must be split
into separate cases na (w) mod 5 = 1, 2, 3, 4.

19: Once 18 is solved, this involves putting c’s into arbitrary positions.

20: Not too important, since these identities will not be used much. They
are easy to see but quite hard to justify precisely, so if you assign any,
say what level of detail you expect. I accept some arguments like

(r∗1)∗ = (λ + r1 + r1r1 + · · ·)∗

= any number of r1 concatenated = r∗1 .

Not very precise, but good enough to see that the student understands
the principle.

21: A general question on how to get the reverse of a language through
the reverse of its regular expression. It is not hard to see that the only
thing we need is to replace ab · · · cd by dc · · · ba recursively, but the
justification requires a somewhat lengthy argument.

22: Formal arguments to provide some omitted details.

23: Gets the student to think about the meaning of closure. For a more
challenging exercise, omit the disclaimers about λ and ∅.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 14 — #14
✐

✐

✐

✐

✐

✐

14 Chapter 3

24 and 25: These are simple exercises, but interesting as they point to some
advanced applications in pattern recognition. Students may find
it interesting to realize that formal languages can be used for
something other than describing strings. There is lots in the
literature on chain-codes.

26: Easy, but introduces the concepts of the next section.

27: An exercise with a somewhat different flavor, with a solution
provided.

28: Similar to Exercise 27, with answer

r = 1 + 10 + 11 + 100 + 101 + 110 + 111
+ 1000 + 1001 + 1010 + 11110 (0 + 1)
+ 1(0 + 1)(0 + 1)(0 + 1)(0 + 1)(0 + 1)(0 + 1)∗

3.2 Connection Between Regular Expressions and Regular
Languages

1: Routine application of a given construction.

2: Hard if not approached correctly (what is the complement of L?), but
easy if you look at it the right way. Here the answer can be found by
complementing an appropriate dfa. This works, since the most natural
construction is a dfa (or at least an incomplete one). A partial answer
we get is

a

a a

b ba
b

b

a

with undefined transitions to an accepting trap state.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 15 — #15
✐

✐

✐

✐

✐

✐

Chapter 3 15

3: Routine drill exercise.

4: Here the student can take the tedious route of regular expres-
sion to nfa to dfa, but of course they can be done from first
principles more easily. Traps those who blindly follow the algo-
rithmic constructions.

5: The nfa’s are trivial and the nfa-to-dfa constructions are rou-
tine. Solutions from first principles may be a little cleaner but
require more thought.

6: Good contrast to Exercise 17(f), Section 3.1. Most students will
find it easier to get the finite automaton first, then the regular
expression from it.

7: Find an nfa for the language, convert to a dfa, then minimize.
A little tedious, but straightforward.

8: Routine application of the construction leading up to Theorem
3.2.

9: The regular expression can be obtained by inspection.

10: Part (a) can be done by inspection. Parts (b) and (c) can be
done by the given construction, but we must first create an nfa
with a single final state, distinct from the initial state. This is a
reminder that the construction in Theorem 3.2 requires an nfa
of a special form.

11 and 12: Drill exercises to make sure the students can follow the con-
struction.

13: Easy if an nfa is constructed first, very hard without this step.
This exercise will give trouble to those who try to find regular
expressions directly. It also demonstrates that finite automata
are easier to work with than regular expressions.

14: It will be hard for students to make the argument precise, but
it serves to justify an important step in the construction.

15: Easy, mainly to keep connection with applications in mind.

16: Quite hard, but the given solution should help students in the
next exercise.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 16 — #16
✐

✐

✐

✐

✐

✐

16 Chapter 3

17: Create a duplicate dfa for L, then follow the pattern suggested by the
diagram below.

q1 q2 q3 duplicate dfa

original dfa

a b

q1 q2 q3
a b

λ λ

18: This shows why the simple automata in Figure 3.1 were chosen in their
particular way. The construction works even for the unusual situations
in this exercise.

3.3 Regular Grammars

The exercises in this section are mostly routine, since the constructions
relating finite automata to regular grammars are quite automatic.

1 and 2: Routine drill exercises.

3: The language is L
(
abba (aba)∗ bb

)
. From this the left-linear gram-

mar can be found without much trouble.

4: A solved exercise.

5: If you follow the suggestion in Theorem 3.5, you will get the gram-
mar q0 → q10|λ; q1 → q01; q2 → q0|q10|q21. This suggests a direct
approach: reverse the arrows in the graph and write the corre-
sponding rules in left-linear form. Notice that the grammar has
several useless productions. Of this, more later.

6: It is trivial to get a grammar for L (aab∗ab). Then we need the
closure of this language, which requires only a minor modification.
An answer is S → aaA|λ,A → bA |C,C → ab| abS.

7: Split into parts (no a’s, one a, etc.), then get a grammar for each.
This is an exercise in combining grammars to get the union of
languages.

8: Theoretical, but the solution is in the solved problems section.

9: See the answer to Exercise 5 above.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 17 — #17
✐

✐

✐

✐

✐

✐

Chapter 4 17

10: Easy to do from first principles, using the same kind of argu-
ment as in Exercise 5.

11 and 12: These exercises look harder than they are. Split into two parts:
na (w) and nb (w) are both even, and na (w) and nb (w) are
both odd.

13: Constructing a dfa for these languages should by now be easy
for most students. After this apply Theorem 3.4.

14: Introduces the important idea of a normal form, about which
we say more later. The technique here is also important : we
introduce new variables, for example

A → a1a2B

becomes

A → a1C

C → a2B

and so on. It is satisfying for the student to discover this.

15: If there is no such rule, no sentence can be derived.

16: A straightforward, applications-oriented exercise.

17: This is a worthwhile exercise whose solution is outlined. Perhaps
students can be asked to make the given outline more precise.

Chapter 4
Properties of Regular Languages

4.1 Closure Properties of Regular Languages

Most of the closure results come either from some construction (such as
the one in Theorem 4.1) or from some set identity (as in Example 4.1).
The exercises in this section expand on these observations. Some of the
constructions are difficult.

1: Prove the result by induction on the number of moves of the nfa.

2: This is a routine exercise that tests the understanding of the algorithm
involved in a constructive proof. It is worthwhile because it gets students
used to constructions involving Cartesian products of states.

3: Follow the construction for the intersection. The final states of the new
automaton are (qi, qj), with qi ∈ F and qj /∈ F .

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 18 — #18
✐

✐

✐

✐

✐

✐

18 Chapter 4

4: Straightforward, fill-in-the-details.

5: Good example of simple induction on the number of languages.

6: We use

S1 � S2 = (S1 ∪ S2) − (S1 ∩ S2)

and known closure properties. A constructive proof (along the lines of
intersection in Theorem 4.1) can be made, and it may be worthwhile
to extend the exercise by asking for such a proof.

7: Follows from

nor (L1, L2) = L1 ∪ L2.

8:

cor(L1, L2) = L1 ∪ L2

9: Gets the student thinking about homomorphism. (a) and (c) are true,
but (b) is false, as shown by the example L1 = L (a∗) , L2 = L (b∗) , h (a) =
a, h (b) = a.

10: Easy problem, with answer L1/L2 = L (a∗).

11: A counterexample may not be obvious. Here is one: L1 = {anbn :
n ≥ 0} , L2 = {bm : m ≥ 0}. Then L1L2/L2 = {anbm : n ≥ 0,m ≥ 0}.

12: A somewhat unusual and challenging problem. The answer is given.

13: The construction can be done either via nfa’s or regular expressions.
Neither approach should be hard to discover. For example, if r is a
regular expression for L and s is a regular expression for Σ, then rss is
a regular expression for L1.

14: An easy problem. Since L is regular, so is LR. Then by closure under
concatenation, so is the language under consideration.

15: While for someone who thoroughly understands the construction of
Theorem 4.4 this problem is in principle not too hard, don’t assume
that this will be easy for your students. The reasoning requires some
ability to adapt a difficult argument for a new purpose. We can change
the right-quotient argument as follows. We first find all qj that can
be reached from q0 with some string from L2 (e.g., by making each
qi a final state and intersecting the L2). All such reachable states are
then made the initial states of an nfa for L1L2. This gives an nfa with
multiple initial states, but according to Exercise 13 in Section 2.2 this
is ok.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 19 — #19
✐

✐

✐

✐

✐

✐

Chapter 4 19

16: Many students havs difficulty with this type of problem, so the given
solution could be instructive.

Exercises 17 to 25 all involve constructions of some difficulty. Several of these
have been encountered peripherally in previous sections, but if this is the
first time students see this type of problem, expect some confusion. However,
once a student has mastered one or two, the rest are not so bad. In addition
to seeing the construction, there is also the difficulty of proving that the
construction works as claimed. This is mostly a matter of using induction
on the length of the strings involved, but there are lots of details that will
give many students trouble. Although these are not easy problems, I suggest
you assign at least one or two of them. Examining the given solution of 18
should help.

17: Find the set of all states δ∗ (q, w) ∈ F for some w. Create a new initial
state and add a λ-transition from it to all elements of Q.

18: You may want to assign this problem just so that students will read the
given answer.

19: Extend the construction in Exercise 14, Section 2.3. The idea is the
same here, but there are a few more details.

20: Suppose the graph for L looks like

a

b

. . .q0 q1 qs

We replace this with

a a

b

. . .q1q0 qs qt

If q0 has several outgoing edges, we create a sub-automaton for each,
giving us an nfa with multiple initial states.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 20 — #20
✐

✐

✐

✐

✐

✐

20 Chapter 4

21: The idea here is similar to Exercise 20. We replace each part of the
graph of the form

ama1 . . .q1q0 qn qs

by

qe

q0 q1
a1

a1

am

am

qn qs

qs

. . .

but for this to work, the final states of the original automaton cannot
have any outgoing edges. This requirement can be met by introducing
new final states and suitable λ-transitions. Also, the construction must
involve separate parts for each pair (a1, am) for which δ(q0, a1) = q1
and δ(qn, am) = qs.

22: A very difficult construction. We can transfer from the automaton for
L1 to that of L2 any time by the addition of suitable λ-transitions, but
the resulting automaton has to remember where to return to. This can
be done by creating a sub-automaton of one for each state of the other;
specifically, if the automaton for L1 has state set Q and that of L2 has
state set P , the automaton for shuff le(L1, L2) will have a state set of
size 2 |Q| |P | arranged somewhat as in the picture below.

b p11p10

b p01p00

a q11q10
a q10q00

a q11q10
a q11q01

λ

λ

Subscript i, j means
that current state
is qi , pj .λ

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 21 — #21
✐

✐

✐

✐

✐

✐

Chapter 4 21

23: Find all states that can be reached from the initial state in five steps.
Then define a new initial state and add λ-transitions to them.

24: For each qi ∈ Q of the automaton for L, construct two nfa’s. The first
one has qi as a final state, the second one has qj as its initial state. If
the languages represented by the first automaton and the reverse of the
language corresponding to the second have any common element, then
qi becomes a final state for the automaton for leftside (L).

25: Take the transition graph of a dfa for L and delete all edges going out
of any final vertex. Note that this works only if we start with a dfa!

26: Simple view of closure via grammars. The ideas are intuitively easy to
see, but the arguments should be done carefully.

4.2 Elementary Questions about Regular Languages

Most of the exercises in this section can be done constructively by explicitly
exhibiting an automaton answering the given questions. But as demon-
strated with several examples in previous sections, set operations together
with known algorithms are often a quicker way to the solution. If the stu-
dents realize this, they will find the exercises much easier.

1: Simple, since L1 − L2 is regular and we have a membership algorithm
for regular languages.

2: If L1 ⊆ L2, then L1 ∪L2 = L2. Since L1 ∪L2 is regular, and we have an
algorithm for set equality, we also have an algorithm for set inclusion.

3: Construct a dfa. Then λ ∈ L if and only if q0 ∈ F .

4: Since L1/L2 is regular and we have an algorithm for set equality, we have
an algorithm for this problem.

5: Use the dfa for L, interchange initial and final states, and reverse edges
to get an nfa M̂ for LR. Then check if L (M) = L

(
M̂

)
.

6: Similar to Exercise 5, except that we need to check if L (M)∩L
(
M̂

)
= ∅.

7: Construct the regular language L1L2 (e.g., by concatenating their regular
expressions), then use the equality algorithm for regular languages.

8: Very simple, since L∗ is regular.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 22 — #22
✐

✐

✐

✐

✐

✐

22 Chapter 4

9: This is a little harder than some of the above exercises. Take a dfa for L.
Then for each pair (qi, qj) such that δ∗ (q0, u) = qi and δ∗ (qj , v) = qf ,
construct an automaton Mij with qi as initial and qj as final state.
Then determine if ŵ ∈ L (Mij).

10: By Exercise 22, Section 4.1, there exists a construction that gives Ms

such that L (Ms) = shuffle (L,L). Using the algorithm for equality of
regular languages, we can then determine if L (Ms) = L.

11: Similar to Exercise 10. Construct Mt such that tail (L) = L (Mt).

12: A good exercise that involves a simple, but not obvious trick. If there
are no even length strings, then

L
(
(aa + ab + ba + bb)∗

)
∩ L = ∅.

Some students will come to grief trying to argue from transition graphs.

13: Look at the transition graph for the dfa. If there is a cycle, then |L| > 5.
If not, check the lengths of all possible paths.

14: Similar to Exercise 12. Check if L
(
(aa + ab + ba + bb)∗

)
∩L is infinite.

15: This is a very simple problem since we have an algorithm to test equality
of two regular languages and Σ∗ is regular.

4.3 Identifying Nonregular Languages

The correct application of the pumping lemma is difficult for many students.
In spite of repeated admonitions, there are always some who will base their
arguments on a specific value of m or a decomposition of their own choosing.
I don’t know how to overcome this except to give lots of exercises.

1 and 2: The proofs of these are nearly identical to the proof of Theorem
4.8; we just have to look at the states traversed during the reading
of any part of the string. These are theoretical, but worthwhile
exercises; they make the student think about what is involved in
the proof of the pumping lemma. The results are useful in Exercise
20 below.

3: A simple problem: pick {ambm} as starting string. Also, here L =
L∗.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 23 — #23
✐

✐

✐

✐

✐

✐

Chapter 4 23

4: This set is generally easy and involves little more than a routine appli-
cation of the pumping lemma, similar to Examples 4.7 and 4.8. (e) is
hard if approached directly. A simpler solution is by contradiction; if L
is assumed regular, so is L. But we already know that, in this particular
case, L is not regular. I think that all parts of this exercise should be
done before proceeding to harder problems.

5: This set is harder than Exercise 4, since some algebra is required. For
example, in (a), pick string aM , where M ≥ m is a prime. Assume that
the string to be pumped is of length k, so that by pumping i times we
get a string of length M+(i− 1) k. By picking i = M+1, we get a string
whose length is not a prime number. Part (b) follows from (a), since
the language here is the complement of that in (a). Parts (c) and (d)
require similar algebraic manipulations. (e) is similar to (a), but (f) and
(g) are traps for the unwary, since both languages are essentially {an}.
There are always a few students who manage to apply the pumping
lemma to “prove” that these languages are not regular.

6: The language in (a) is regular, but (b) is not. Applying the pumping
lemma to (b) requires some care.

7: An easy application of the pumping lemma.

8: A hard problem. One way to go about it is to note that the complement
of L is closely related to {anbn ∪ an+1bn ∪ an+2bn}, then using closure
under complementation.

9: The problem is easy if you notice that na(w) = nb(w) + nc(w).

10: Part (a) is very hard. We have to pick a very special string aM2+1 to
start with. Suppose the middle string has length k; then the pumped
string is aM2+1+(i−1)k. If we now pick M = m!, then i can be chosen
so that M2 + 1 + (i − 1)k = (M + 1)2. The argument through closure
is easy since we have Example 4.11.

11: Start with w = am!. Then w0 = am!−k and m! − k > (m− 1)!.

12: Very easy.

13: Here it is hard to use the pumping lemma directly; instead note that L∩
L (a∗b∗) =

{
anbk : n = k − 1

}
. We can easily pump out this language.

14: False. Take L1 = {anbm : n ≥ m} and L2 = {anbm : n < m}. Both
these languages are nonregular, but L1 ∪ L2 is regular. Many students
have difficulty in getting a handle on this problem and try in vain to
apply the pumping lemma.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 24 — #24
✐

✐

✐

✐

✐

✐

24 Chapter 4

15: Good exercise for students to develop some intuition about what is
and what is not a regular language. The key is how much has to be
remembered by the automaton. Answers: (a) regular, (b) not regular,
(c) not regular, (d) not regular, (e) not regular, (f) regular, (g) not
regular.

16: No, but it is hard to apply the pumping lemma directly. Instead, look
at L∩L

(
(a + b)∗ c (a + b)∗

)
= {w1cw2 : w1 = w2}. The latter is clearly

not regular.

17: Yes, follows from known closure properties since L = L1 ∩ LR
2 .

18: Repeat the argument in Example 4.6, replacing an with w and bn with
wR.

19: Somewhat difficult, but with a good contrast between (a) and (b). The
solution is given.

20: The answer is no, but this is difficult to prove. It seems impossible to
pick a string to which Theorem 4.8 can be applied successfully. Suppose
we pick w = ambmbmam+1 as our starting string. Then the adversary
simply chooses x = λ and y = a. We cannot win now by any choice of i,
because with w = a, the pumped string is still in L. We can do better
by applying the extended version of the pumping lemma as stated in
Exercises 1 and 2 previously. We now choose

w = abbbambmbm am bbbaa,

as the initial string, forcing the adversary to pick a decomposition in the
boxed part. The result can be pumped out of the language, although it
takes a fair amount of arguing to convince yourself that this is so.

21: Take Li =
{
aibi

}
. Each language is finite and therefore regular. Their

union is the nonregular language {anbn : n ≥ 0}.

22: A theoretical exercise, filling a gap left in a previous argument. The
proof can be done by induction on the number of vertices.

23: A very difficult exercise. The answer is no. As counterexample, take the
languages

Li =
{
viuv

R
i : |vi| = i

}
∪

{
viv

R
i : |vi| < i

}
, i = 0, 1, 2, ...

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 25 — #25
✐

✐

✐

✐

✐

✐

Chapter 5 25

: We claim that the union of all the Li is the set
{
wwR

}
. To justify

this, take any string z = wwR, with |w| = n. If n ≥ i, then z ∈{
viuv

R
i : |vi| = i

}
and therefore in Li. If n < i, then z ∈

{
viv

R
i : |vi| < i

}
,

i = {0, 1, 2, ...} and so also in Li. Consequently, z is in the union of all
the Li.

Conversely, take any string z of length m that is in all of the Li. If we
take i greater than m, z cannot be in

{
viuv

R
i : |vi| = i

}
because it is

not long enough. It must therefore be in
{
viv

R
i : |vi| < i

}
, so that it has

the form wwR. As the final step we must show that for each i, Li is
regular. This follows from the fact that for each i there are only a finite
number of substrings vi.

24: Very similar in appearance to Exercise 12 in Section 4.1, but with a
different conclusion. The fact that L1 is not necessarily finite makes a
difference. L2 is not necessarily regular, as shown by L1 = Σ∗, L2 =
{anbn : n ≥ 1}.

25: Rectangles are described by unrmdnlm. Apply the pumping lemma to
show that the language is not regular.

26: A problem for students who misunderstand what the pumping lemma
is all about.

Chapter 5
Context-Free Languages

5.1 Context-Free Grammars

The material in this section is important, but not hard to understand. Most
of the exercises explore the concepts in a fairly direct way. Nevertheless, an
occasional problem can be difficult. Many of the exercises are reminiscent
of (or extensions to) the grammar problems in Section 1.2.

1: Straightforward reasoning: first, S ⇒ abB. By induction it follows
easily that B

∗⇒ (bbaa)n
B (ba)n. Finally, B ⇒ bbAa ⇒ bba, so

that S
∗⇒ ab (bbaa)n

bba (ba)n.

2 and 3: Simple drill exercise.

4: The solution is given.

5: No, by an easy application of the pumping lemma for regular
languages.

6: Fill-in-the-details via an induction on the number of steps in the
derivation.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 26 — #26
✐

✐

✐

✐

✐

✐

26 Chapter 5

7: Most of the exercises in this set should not prove too difficult for stu-
dents who have previously encountered such questions in Section 1.2.
The problems increase somewhat in difficulty from (a) to (g). Several
of the exercises simplify when split into subsets (e.g., n 	= m can be
divided into n < m and n > m). Answers:

(a) S → aSb |A|B,A → λ |a| aa |aaa,B → bB| b.
(b) S → aSb |A|B,A → aA |λ,B → bbC,C → bC|λ.

(c) S → aaSb |A|B,A → aA |a,B → bB| b.
(d) S → aSbb |aSbbb|λ.

(e) First split into two parts (i) na(w) > nb(w), and (ii) na(w) <
nb(w). For part (i), generate an equal number of a’s and b’s, then
more a’s.

(f) Modify Example 5.4 to get S → aSb|SS|S1, where S1 can derive
more a’s.

(g) Quite difficult, but easier if you understand the solution of 18(c),
Section 1.2. Modify that grammar so that the count ends up at
+1.

8: A set similar in difficulty to Exercise 7. Again, they are much easier if
split intelligently. For example, in (a) we let L1 =

{
anbmck : n = m

}
and L2 =

{
anbmck : m ≤ k

}
. Then we use S → S1|S2, where S1 derives

L1 and S2 derives L2. The other parts are similar in nature.

9: Conceptually not hard, but the answer is long: for each a, generate two
non-a symbols, e.g., S → aSbb|aSbc|... etc.

10: Easy, once you see that head (L) = L (a∗b∗).

11: An easy exercise, involving two familiar ideas. An answer:

S → aSb |S1, S1 → aS1a| bS1b|λ.

12: Introduce new variables and rewrite rules so that all terminals are
on the left side of the productions. For example, S → aSb becomes
S → aSB,B → b. Then add productions A → λ for all variables that
can derive a terminal string. This anticipates some of the grammar
manipulations of Chapter 6 and is easier after that material has been
covered. At this stage, it can be quite difficult.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 27 — #27
✐

✐

✐

✐

✐

✐

Chapter 5 27

13: This exercise anticipates the closure results of Chapter 8. The problems
are not too difficult, for example, the solution to part (b) can be con-
structed by S → S1...S1, where S1 derives L. The hardest part of the
exercise is to find a grammar for L because this first requires a char-
acterization of L. We can do so by splitting the problem into various
cases, such as {anbm} with n > m, etc.

14: Another simple exercise, anticipating closure under union.

15: For an answer, use S → S1S2, with S1 deriving (a + b) (a + b) and
S2 → aS2a |bS2b|S1.

16: Difficult, but the solution is in the book.

17: A little easier than solving Exercise 16.

18: A difficult, but instructive exercise. Two alternatives have to be consid-
ered: (a) |w1| = |w2|, in which case the grammar must generate at least
one different symbol in the same relative position, and (b) |w1| 	= |w2|.
A solution can be found starting with

S → aSa|bSb|M
M → aEb|bEa|L|R

where E, L, and R derive strings with |w1| = |w2|, |w1| > |w2|, and
|w1| < |w2|, respectively.

19: Routine drill to give the derivation tree, but an intuitive characteriza-
tion of the underlying language is quite hard to make. One way is to
describe the language as

L = {w : 2na (w) = nb (w) , w = aubyb, with u ∈ L, y ∈ L} .

20: An easily solved problem.

21: Easy, but there are many answers.

22: S → [S] |(S)|SS|λ.

23: This exercise is not hard, but it is worthwhile since it introduces an
important idea. You can view this as an example of a metalanguage,
that is, a language about languages.

24: Same idea as in Exercise 23.

25: For a leftmost derivation, traverse tree in preorder, that is, process
root, process left subtree, process right subtree, recursively, expanding
each variable in turn. The fact that we can do this shows that a leftmost
derivation is always possible. For a rightmost derivation, use a traversal
defined by: process root, process right subtree, process left subtree.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 28 — #28
✐

✐

✐

✐

✐

✐

28 Chapter 5

26: Expands on discussion in Example 5.3. For the case n > m, we can use
the linear productions S → aS |A,A → aAb|λ, with a similar set for
the case n < m.

27: A fairly simple exercise involving some counting of leaves in a tree. The
major purpose is to get students to think about derivation trees. To
get the answer, establish a relation between the height of the derivation
tree and the maximum number of leaves. For a tree of height h, the
maximum number is hk. The other extreme is when there is only one
node (i.e., there is only one variable in v). In this case, each level except
the last has k − 1 leaves, so |w − 1| = h (k − 1).

5.2 Parsing and Ambiguity

1 to 3: While finding a grammar for these languages is trivial, the require-
ment that they be s-grammars makes the exercises a little more
challenging.

4: Clearly, there is no choice in a leftmost derivation.

5: For each variable A on the left, there are at most |T | possible right
sides so that |P | ≤ |V | |T |.

6: A simple, solved problem.

7: The language is L (aa∗b), so the answer is trivial.

8: A routine drill exercise.

9: Construct a dfa and from it a regular grammar. Since the dfa never
has a choice, there will never be a choice in the productions. In fact,
the resulting grammar is an s-grammar.

10: Straightforward modification of Example 5.12. Follow the approach
used for arithmetic expressions.

11: Yes, for example S → aS1|ab, S1 → b. Contrast this with Exer-
cise 9 to show the difference between ambiguity in a grammar and
ambiguity of a language.

12: The grammar S → aSa |bSb|λ is not an s-grammar, so we can-
not immediately claim that it is unambiguous. But, by comparing
the sentential form with the string to be parsed, we see that there
is never a choice in what production to apply, so the grammar is
unambiguous.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 29 — #29
✐

✐

✐

✐

✐

✐

Chapter 6 29

13: Consider w = abab, which has two leftmost derivations

S ⇒ aSbS ⇒ abS ⇒ abab

and

S ⇒ aSbS ⇒ aSb ⇒ abab.

14 and 15: Simple variations on the current theme.

16: The grammar has all s-grammar productions, except for B → A
and B → λ, but we can always tell which to use.

17: The first part is a somewhat tedious drill. For the second part,
note that A → bBb produces two terminals, and B → A none.
So every two productions produce two terminals, and we have
at most |w| rounds.

18: The derivation of any nonempty string must start with S →
aAb, and continue with A → aAb until enough terminals are
generated.

19: Consider leftmost productions. Since the variable to be ex-
panded occurs on the left side of only one production, there
is never a choice.

20: A solved exercise.

5.3 Context-Free Grammars and Programming Languages

A set of rather simple and not very exciting exercises. The main purpose of
this type of exercise is to remind students of potential applications. Assign
one or two of these if you feel that such a reminder is necessary.

Chapter 6
Simplification of Context-Free Grammars and
Normal Forms

Many of the exercises in this chapter are conceptually easy, but tend to be
lengthy. This reflects the material of this chapter, whose main difficulties are
technical. The exercises are useful to reinforce the constructions. Without
them, the students may be left with some misunderstandings.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 30 — #30
✐

✐

✐

✐

✐

✐

30 Chapter 6

6.1 Methods for Transforming Grammars

1: This involves filling in some missing steps, using the given rea-
soning in reverse.

2: A reminder of derivation trees.

3: Simple, just substitute for B.

4: It is not clear how to interpret the algorithm if A = B.

5: A routine application of the algorithm in Theorem 6.2. The
grammar generates the empty set.

6: Straightforward, but shows that order matters.

7 to 9: Routing applications of the given theorems.

10 and 11: Involve elementary arguments to complete some missing detail.

12: Since S is a nullable variable, we get

S → ab |aSb|SS

which derives the original language without λ. This leads into
a subsequent exercise, where the particular observation is made
general.

13: Another example of what happens in λ-removal when λ ∈ L(G).

14: This generalizes the previous two exercises. To prove it, show
that every nonempty string in L (G) can still be derived.

15: A solved exercise.

16: We add A → y1 |y2| · · · . But none of the yi are empty, so that
no λ-productions can be added.

17: Here we add no productions at all.

18: Addresses an issue that is pretty obvious to students, but which
some find difficult to justify rigorously. An argument, which is
at least plausible, can be made from the derivation tree. Since
the tree does not embody any order, the order of replacement
of variables cannot matter.

19: This rather trivial substitution can be justified by a straight-
forward argument. Show that every string derivable by the first
grammar is also derivable by the second, and vice versa.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 31 — #31
✐

✐

✐

✐

✐

✐

Chapter 6 31

20: An important point: the modified process does not work correctly.
Counterexample:

S → abc|AB

A → ac.

B will be recognized as useless, but not A.

Exercises 21 and 22 are intimidating in appearance, but really quite simple,
once the notation is understood. I include them, because students sometimes
ask: “What is the simplest grammar for this language?” so it is useful to
point out that “simplest” has to be defined before such a question becomes
meaningful.

21: Looks harder than it is. Obviously, in removing useless variables we
introduce no new productions; therefore, the complexity decreases. For
the others, though, one can find simple examples where the complexity
is increased.

22: Also simple, for example S → aA, A → a does not have minimal
complexity. Serves to point out that just removing useless variables
does not simplify the grammar as far as possible.

23: A difficult problem because the result is hard to see intuitively. The
proof can be done by showing that crucial sentential forms generated
by one grammar can also be generated by the other one. The important
step in this is to show that if

A
∗⇒ Axk...xjxi ⇒ yrxk...xjxi,

then with the modified grammar we can make the derivation

A ⇒ yrZ⇒ ∗⇒ yrxk...xjxi.

This is actually an important result, dealing with the removal of certain
left-recursive productions from the grammar and is needed if one were
to discuss the general algorithm for converting a grammar into Greibach
normal form.

24: A routine application illustrating the result of Exercise 23.

25: The arguments are similar to those in Exercise 23.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 32 — #32
✐

✐

✐

✐

✐

✐

32 Chapter 6

6.2 Two Important Normal Forms

1: Straightforward even though a bit theoretical. By now the stu-
dents should have no trouble with this sort of thing.

2 and 3: Routine drills, involving an easy application of Theorem 6.7.

4 and 5: To apply the method described in Theorem 6.7, we need to re-
move λ-productions first. The rest is easy, but a little lengthy.

6: An exercise that looks harder than it is. It can be solved with
elementary arguments. Enumerate the productions generated in
each step. In the first, we introduce Va for all a ∈ T and |T | new
productions Va → a. In the second, right sides of length k are
split into k − 1 separate rules. The stated result follows easily.

7: A trivial exercise, just to get students to work with the widely
used concept of a dependency graph.

8: A simple solved exercise leading to a normal form for linear gram-
mars.

9: Another normal form, which can be obtained from Chomsky nor-
mal form. Productions A → BC are permitted. For A → a, cre-
ate new variables V1, V2 and productions A → aV1V2, V1 → λ,
V2 → λ.

10 to 13: These are relatively simple problems whose answers can be found
from first principles. They serve to make it plausible that conver-
sion to Greibach normal form is always possible.

14: No, since the result is a regular grammar.

15: This solved problem is not too hard, but its generalization in the
next exercise can be quite difficult.

16: This exercise shows an important extension of the material in
the text. It is for most a very difficult exercise, since it involves
a good grasp of the use of substitutions. Start from Greibach
normal form, then make substitutions to reduce the number of
variables in the productions. We illustrate this step with

A → aBCD.

First introduce a new variable V1 and productions

A → aV1

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 33 — #33
✐

✐

✐

✐

✐

✐

Chapter 7 33

1: and

V1 → BCD.

The second production is not in correct form so we continue, introducing
V2 and

V1 → BV2

and

V2 → CD.

After a while, all productions will be either in correct form or of the form

Vk → Bvj .

But the rules with B on the left are either

B → b

or

B → bVj .

The final substitution then gives the right form. Complete arguments
can be found in some advanced treatments, for example, in Harrison
1978. This exercise may be suitable for an extra-credit assignment for
the better students.

6.3 A Membership Algorithm for Context-Free Grammars

The material in this section is optional. The CYK algorithm is difficult
to grasp and not particularly important for understanding the concepts in
this text. Still, it is a good example of dynamic programming, and students
can benefit from studying it. The exercises in this section can be used to
complement what might be a very short discussion in class. Exercises 1 and
2 are drill, requiring no more than an understanding of the notation by
which the algorithm is described. Exercises 3 and 4 involve an extension
and actual implementation. For this, the student will have to have a good
understanding of the construction.

Chapter 7
Pushdown Automata

7.1 Nondeterministic Pushdown Automata

Here we have a collection of problems of varying difficulty. Particularly in-
structive are the ones that force the student to think nondeterministically.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 34 — #34
✐

✐

✐

✐

✐

✐

34 Chapter 7

This is really the first place where nondeterminism becomes an important is-
sue. For finite automata, a deterministic solution can always be constructed,
so nondeterminism sometimes appears as a technical trick. Here the situa-
tion is different. In problems such as Exercise 4(f), students often start by
trying to find a deterministic solution and will arrive at the nondeterminis-
tic approach only after a few failures. But once they discover the solution,
they begin to understand something about nondeterminism. An even more
convincing problem is Exercise 10 in Section 8.1.

1: No need for state q1; substitute q0 wherever q1 occurs. The major diffi-
culty is to argue convincingly that this works.

2: This problem is not too hard, but requires a little bit of analysis of the
nondeterministic nature of the pda in Example 7.5. For this reason, it
is a helpful exercise. An argument goes somewhat like this: the switch
to state q1 is done nondeterministically, and can be made any time. But
if it is not made in the middle of the string, the emergence of the stack
start symbol will not coincide with the end of the input. The only way
the stack can be cleared is to make the transition in the middle of the
input string.

3: Because the languages involved are all regular, the npda’s can be con-
structed as nfa’s with an inactive stack. One of these problems may be
useful in illustrating this point.

4: A set of exercises in programming a pda. Most students will have some
experience in programming with stacks, so this is not too far removed
from their experience and consequently tends to be easy. Those problems,
such as (f) and (j), that illustrate nondeterminism may be a little harder.
Part (a) is easy: put two tokens on stack for each a, remove one for each
b. Parts (b) and (c) are also easy. Part (d) is a little harder. Put a
token on stack for each a. Each b will consume one until the stack start
symbol appears. At that time, switch state, so now b puts on tokens to
be consumed by c. In (e), use internal states to count three a’s. In (f)
nondeterminism is the key; an a can put one, two, or three tokens on the
stack. Parts (g), (h), and (i) are easy, following the approach suggested
in Example 7.3. Part (j) is similar, but uses nondeterminism.

5: Students who blindly follow the lead suggested by Example 7.2 will make
a number of subtle errors, but the approach is still useful. The best way
to proceed is to split the npda initially into cases n > m and n < m.
The first can be dealt with by putting the pda into a final state with
δ (q2, λ, 1) = {(qf , λ)}. In the second case, the stack start symbol will
appear before all the b’s are read, and one must be careful to check the
rest of the string (otherwise, something like abba might be accepted).

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 35 — #35
✐

✐

✐

✐

✐

✐

Chapter 7 35

6: At first glance this looks like a simple problem: put w1 in the
stack, then go into a final trap state whenever a mismatch with
w2 is detected. But there may be trouble if the two substrings are
of unequal length, for example, if w2 = wR

1 v. Taking care of this
takes a good bit of thought. A difficult, but highly recommended
problem. A solution is below.

q2

q3

q4q0 q1
q5

b, a; a
b, Z; Z
b, b; b

b, Z; Z
a, Z; Z

a, b; b
a, a; a
a, Z; Z

c, a; a
c, b; b
c, Z; Z

a, b; b
a, a; a
a, Z; Z

b, Z; Z
b, a; a
b, b; b

b, Z; bZ
b, b; bb
a, a; aa
a, Z; aZ
a, b; ab
b, a; ba

b, Z; Z
b, a; a
b, b; b
a, Z; Z
a, a; a
a, b; b

, Z; Z

, a; λ λ

, b; λ

λ

λ

7: This adds another twist to Exercise 6, since the part belonging
to L (a∗) must not be put on stack. We can use nondeterminism
to decide where this part ends.

8: A lengthy, but not difficult problem. The reason for the lengthi-
ness is that internal states must be used to recognize substrings
such as ab as a unit. This substring puts a single symbol on the
stack, which is then consumed by the substring ba.

9 and 10: These are simple exercises that require an analysis of a given
pda.

11: A simple tracing exercise.

12: Any string will be accepted since there are no dead configura-
tions.

13: Adds λ to the original language.

14: Not an easy problem, but the solution is provided.

15: No change. Since the original machine accepts w, we have

(q0, w, z)
∗
� (q2, λ, 0) � (q3, λ, λ) .

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 36 — #36
✐

✐

✐

✐

✐

✐

36 Chapter 7

: But in the modified machine

(q0, w, z)
∗
� (q2, λ, 0) � (q0, λ, 0) � (q3, λ, λ) .

16: Not a very difficult construction, but worthwhile. The trick is to re-
member the extra symbols using internal states, for example,

δ (qi, a, b) = {(qj , cde)}
is replaced by

δ (qi, a, b) = {(qjc, de)}
δ (qjc, λ, d) = {(qj , cd)} .

This result is needed in subsequent discussions.

17: In many books this is treated as a major issue. We left it out of our
main discussion, but the result is useful. The construction is not hard
to discover. Whenever the pda goes into a final state, it can be put into
a stack-clearing mode. Conversely, if M̂ sees an empty stack, it can be
put into a final state. It’s a good exercise to have students make the
argument precise. This result is also needed later.

7.2 Pushdown Automata and Context-Free Languages

There are some difficult constructions in this section, particularly in The-
orem 7.2. A few exercises will make the results plausible, which is all one
really needs.

1: Straightforward drill exercise.

2: A relatively easy proof that just formalizes some obvious observa-
tions.

3: The long way is to follow the construction in Theorem 7.1. The
short way is to notice that

L (G) =
{
an+2b2n+1 : n ≥ 0

}
.

4 to 6: The grammars should be converted to Greibach normal form, after
which the exercises are direct applications of the construction of
Theorem 7.1.

7: This exercise requires that the student be able to put together two
observations made in the text. In Theorem 7.1 we constructed a
three-state pda for any context-free grammar. From Theorem 7.2
we get a context-free grammar for every npda. Putting the two
together proves the claim.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 37 — #37
✐

✐

✐

✐

✐

✐

Chapter 7 37

8: This may be quite hard to see and involves a careful examina-
tion of the proof of Theorem 7.1. The state q1 serves the sole
purpose of ensuring that the desired derivation gets started. If
we replace q1 by q0 everywhere, we change very little, except
that Equation (7.3) now becomes

δ (q0, λ, z) = {(qf , z)}
and λ is also accepted. To fix this, introduce another special
symbol, say z1, then use

δ (q0, λ, z) = {(q0, Sz1)}
and

δ (q0, λ, z1) = {(qf , λ)} .

9 and 10: Two similar exercises, one of which is solved.

11 and 12: These two exercises illustrate Theorem 7.2. Since the proof of
the theorem is tedious and intricate, you may want to skip it
altogether. In that case, these two exercises can be used to make
the result more believable.

13: May be worthwhile, since it expands on a comment made in the
proof of Theorem 7.2.

14 and 15: Routine use of a given construction.

16: Explores a point treated somewhat briefly in the text. Two pre-
vious exercises (Exercises 16 and 17 in Section 7.1) are similar
to what is needed here and give an idea for a construction that
can be used.

17: This fill-in-the-details exercise is long and tedious and is worth-
while only if you are concerned with tying up all loose ends.

18: This is a worthwhile exercise in algorithm construction. The
basic process is sketched on p. 189, so most students should be
able to provide the details.

19: Yes, there are still useless variables. Since

(q3zq1) → (q0Aq3)(q3zq1)

is the only variable with (q3zq1) on the left, it can never result
in a terminal string.

If all useless productions are removed, we get a grammar with
only six productions.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 38 — #38
✐

✐

✐

✐

✐

✐

38 Chapter 7

7.3 Deterministic Pushdown Automata and Deterministic
Context-Free Languages

1 to 3: Easy modifications of Example 7.10.

4: A little harder, with a given solution.

5: The pda is not deterministic because δ (q0, λ, z) and δ (q0, a, z)
violate the conditions of Definition 7.3. For a deterministic so-
lution, make qf the initial state and use δ (qf , a, z) = {(q0, 0z)},
δ (qf , b, z) = {(q0, 1z)}. Then remove δ(q0, a, z) and δ(qb, z).

6: This is fairly easy to see. When the stack is empty, start the
whole process again.

7: Somewhat vague, but worthwhile in anticipation of results in
Section 8.1. Intuitively, we can check n = m or m = k if we know
which case we want at the beginning of the string. But we have
no way of deciding this deterministically. I like to assign this
kind of exercise because it encourages students to develop some
intuitive insight, but students tend to find it a little frustrating
because it is hard to say exactly what is expected. The answers
are also hard to grade.

8: The language is deterministic. Construct the pda as you would
for n = m + 2. When all b’s have been matched, check if there
are two more b’s. Special care has to be taken to ensure that ab
and aabb are handled correctly.

9: A straightforward exercise. The c makes it obvious where the
middle of the string is.

10: This makes a good contrast to Exercise 9. Since there is no
marker, we need to guess where the middle is. It seems plau-
sible that this cannot be done deterministically, but the proof
is very difficult and you cannot expect more than just some
hand-waving motivation.

11: Proceed as in the case na (w) = nb (w), Example 7.3 and Exer-
cise 5 above. When z comes to the top of the stack and we are
not in state qf , accept the string.

12 to 14: Here the student is asked to work out some details omitted in
the text. The arguments should not be too hard. For example,
suppose anbnck were accepted, making the λ-transition shown
in Figure 7.2. By not making the λ-transition, we could accept
anbn+k, which contradicts what we know about M .

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 39 — #39
✐

✐

✐

✐

✐

✐

Chapter 7 39

15: A dfa can be considered a dpda whose stack is irrelevant. This
intuitive reasoning is easy, but if you ask for more detail, the
argument tends to become lengthy.

16 and 17: These exercises anticipate later results, and both have some
nonobvious constructions that can be made along the lines of
the intersection construction in Theorem 4.1. If Q and P are
the state sets for the dfa accepting L2 and the dpa accepting
L1, respectively, the control unit has states Q × P . The stack
is handled as for L1. The key is that L2 is regular, so that the
combined machine needs only a single stack and is therefore a
pda.

18: It is hard to discover an example of this, but a modification
of Example 7.9 will do. Let L1 = {anbn : n ≥ 0} and L2 ={
anb2nc : n ≥ 0

}
. Then clearly L1∪L2 is nondeterministic. But

the reverse of this is {bnan}∪
{
cb2nan

}
, which can be recognized

deterministically by looking at the first symbol.

7.4 Grammars for Deterministic Context-Free Languages

The material in this section is important in a course on compilers, but
dispensable here and therefore treated only very briefly. The exercises here
point the way to more complicated issues treated in compilers courses. Con-
structing LL grammars, and proving that they are indeed LL, tends to be
quite difficult.

1: A reasonably simple argument to show that the grammar is LL (3).
If the next two symbols are ab and the next is not the end of the
string, apply S → abS, otherwise use S → aSbS. We can be more
formal and use Definition 7.5, but you will have to append some
sort of end-of-string symbol to make it come out exactly right.

3: In my observation, this is nearly impossible for a student who
approaches the problem from first principles. A more workable,
but lengthy approach first constructs a dpda for the language
(easy), then uses the construction of Theorem 7.2.

5: By definition, at most one production can be applied at any step,
so there is a unique leftmost derivation.

6 and 7: An exploration of some connections that were not explicitly men-
tioned in the text. The arguments can be made using the estab-
lished connection between pda’s and grammars, where in the pda

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 40 — #40
✐

✐

✐

✐

✐

✐

40 Chapter 8

8: a finite look-ahead can be built into the control unit. Formal arguments
are involved, making this an extra-credit problem for the very good stu-
dents.

8: Obviously, if the grammar is in GNF, we can see by inspection if it is
LL (1). To see if it is LL (2), substitute for the leftmost variable. For
example

A → aB

A → aC

B → bD

C → cE

is not LL (1). But if we substitute to get

A → abD

A → acE

then by looking at two symbols, we know how to expand A and we can
tell if the grammar is LL (2).

9: (a) is easy, but the exercises get progressively harder. (d) and (e) are
very hard to do from first principles, but are more manageable if you
construct a dpda first.

Chapter 8
Properties of Context-Free Languages

8.1 Two Pumping Lemmas

Having worked with the pumping lemma for regular languages, students
can be expected to be familiar with the basic idea behind such arguments.
What is new here is that there are generally more decomposition choices,
all of which must be addressed if the argument is to be complete. The most
common mistake is that students forget to take everything into account.

1: This is easy, just start with ambmcm and show how different choices of
v and y can be pumped out of the language.

2: The argument is essentially the same as for regular languages. See the
solution of Exercise 5(a), Section 4.3.

3: See solution.

4: First, you have to find a string in the language. One string is na = 3m,
nb = 4m, nc = 5m. This can be pumped out of the language without
too much trouble.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 41 — #41
✐

✐

✐

✐

✐

✐

Chapter 8 41

5 and 6: Follow the suggestions in Examples 8.4 and 4.11, respectively.

7: These will be challenging to many students, but the methods of
attack should already be known from previous examples and exer-
cises. Things get easier after you solve one or two of these. For (j)
and (k), note that the string aM , where M is prime and M ≥ m
can be used in the pumping lemma.

8: This set of examples is a little more interesting than the previous
ones, since we are not told to which language family the examples
belong. It is important that the students develop some intuitive
feeling for this. Before a correct argument can be made, a good
conjecture is necessary. Answers: (a) context-free, (b) not context-
free, (c) context-free, and a good contrast with (b), (d) context-
free, (e) not context-free, (f) not context-free. Note the different
conclusions of (b) and (c). (g) is not context-free.

9: A reasonably easy fill-in-the-details exercise. The string must be
long enough so that some variable repeats in the leftmost posi-
tion. This requires |V | steps. If the length of the right side of any
production is not more than N , then in any string of length |V |N
or longer, such a repetition must occur.

10: Difficult, with a surprising answer.

11: An easy exercise. Show that it is context-free by giving a context-
free grammar. Then apply the pumping lemma for linear lan-
guages to show that it is not linear.

12: Choose as the string to be pumped amb2mam.

13: A two-part problem, illustrating existence and non-existence ar-
guments.

14: The language is linear. A grammar for it is

S → aSb |aaSb| ab.

15: The language is not linear, although not every string can be
pumped out of the language. A string that does work is

w = (... (a) ...) + (... (a) ...)

where (... (and) ...) stand for m parentheses.

16: This requires an elaboration of some claims made in proof of The-
orem 8.2.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 42 — #42
✐

✐

✐

✐

✐

✐

42 Chapter 8

17: A fairly easy exercise that involves an examination of the pro-
cedures for removing λ-productions and unit-productions. It is
straightforward to argue that if we start with a linear grammar,
the constructions do not introduce any nonlinear productions.

18: This is not a context-free language. If we choose as our string
something like a = 111...10, b = a + 1, then the adversary has
few choices, all of which are easily pumped out of the language.

19: A difficult problem; considerably harder than Exercise 6. It
takes much more thought to find a string that can be pumped
out of the language. One answer: Choose n = (m!)2 + m! If
the adversary picks a string of length r ≤ m to be pumped, we
choose i such that

(m!)2 + m! + ir = (m! + r)2

or

i =
m! (2r − 1) + r2

r
.

Since m!/r is an integer, it is always possible to choose an in-
teger i to pump the string out of the language.

20: Similar to and not much harder than Exercise 2. Choose apq,
with p, q < m, then pump the chosen substring pq times.

21 and 22: Any w ∈ L must be of the form anbncn+k, where k can be
positive or negative. The adversary can now take vy = cl, with
l chosen, depending on the value of k, to make it impossible to
pump out of the language. For example, if k = 1, the adversary
chooses l = 2; if k is larger and positive, the adversary chooses
l = k + 1. This way, any of our choices for k can be frustrated
and we cannot get a contradiction of the pumping lemma.

With Ogden’s lemma, we can take away some of the adversary’s
choices by marking only the a’s. We then choose the test string

w = ambmcm+m!.

The best the adversary can now do is to take v = ak and y = bk.
We then pump with

i− 1 =
m!
k

to get string not in L.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 43 — #43
✐

✐

✐

✐

✐

✐

Chapter 8 43

8.2 Closure Properties and Decision Algorithms for Context-Free
Languages

2: An easy problem with a simple answer

S → Sc |A|λ
A → aAb|λ.

Exercises 3 to 5 are theoretical, but easy. Students should have no trouble
with such elementary arguments.

3: Consider all productions. For each a ∈ T , substitute h (a). The new
set of productions gives a context-free grammar Ĝ. A simple induction
shows that L

(
Ĝ

)
= h (L).

4: Same reasoning as in Exercise 3.

5: Given G, construct Ĝ by replacing A → x with A → xR. Then prove
by induction on the number of steps in the derivation that if x is a
sentential form of G, then xR is a sentential form of Ĝ.

6: Closed under reversal: regular, linear, and context-free languages. Not
closed under reversal: deterministic context-free languages. For the last
case, see the solution of Exercise 18, Section 7.3.

7: A little challenging, but the arguments are similar to those in Theorem
8.5. Consider Σ∗ − L = L. If context-free languages were closed under
difference, then L would always be context-free, in contradiction to
previously established results.

To show that the closure result holds for L2 regular, do the cross-
product construction suggested in Theorem 8.5, accepting a string if
it ends in a state belonging to F1 × F 2.

8: Same arguments as in Exercise 7. The construction does not introduce
any nondeterminism if the pda for L1 is deterministic.

9: For union, combine grammars. This does not affect linearity. For non-
closure under concatenation, take L = {anbn}. Then as we can show
by a simple application of the pumping lemma, L2 is not linear.

10: There is a simple answer, but it is easy for students to get off on the
wrong track. The languages L1 and L2 in Theorem 8.4 are linear, but
their intersection is not context-free, so it is not linear.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 44 — #44
✐

✐

✐

✐

✐

✐

44 Chapter 8

11: That deterministic context-free languages are not closed under union
was shown in Example 7.9. Intersection follows from the languages in
Theorem 8.4.

12: This problem requires a chain of reasoning. The necessary pieces are
known, so it is just a matter of finding what is needed. The language L
in Exercise 10, Section 8.1 is context-free, but its complement is not. If it
were, then the language L∩L ((a + b)∗c(a + b)∗) would be context-free
by reasoning similar to that of Exercise 7. But this is the non-context-
free language {wcw}. This is a worthwhile but quite difficult problem
unless students have done (and remember) Exercise 10 in Section 8.1.

13: Not an easy problem. The trick is first to use a left-linear grammar
for L2. In this grammar, every production that leads immediately to a
terminal string, say, A → ab..., is replaced by A → S1ab..., where S1 is
the start symbol for a linear grammar that derives L1. We then derive
S

∗⇒ Aw2 ⇒ S1ab...w2, where ab...w2 ∈ L2. After S1 is used to derive
a string in L1, the result is in L1L2.

14: This is an easy problem if you take Example 5.13 as given. The lan-
guages L1 = {anbncm} and L2 = {anbmcm} are both unambiguous,
but, as we claimed in Example 5.13, their union is not.

15: The intersection of the two languages in the solution to Exercise 14 is
not even context-free.

16: L1 is not necessarily deterministic. As counterexample, take L = {anbn}∪{
canb2n

}
.

17: One can construct a context-free grammar for this language, but a sim-
pler argument is to use Theorem 8.5. L is the intersection of the context-
free language {anbn : n ≥ 0} and

{
akbm : k is not a multiple of 5

}
.

18: Can be solved by the same approach as Exercise 17.

19: Yes. The argument requires an easy, but lengthy construction. Consider
a dpda for such a language. Modify it so that whenever it “consumes”
a terminal a, the modified pda consumes h (a). The result of the con-
struction is still deterministic.

20: Fill-in-the-details as practice for induction.

21: Use the algorithm for finding nullable variables in Theorem 6.4.

22: Rewrite the grammar in Greibach normal form. Then enumerate all
partial derivations of length n or less to see if any of them yield a
sentence.

23: Use Theorem 8.5, together with Theorem 8.6.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 45 — #45
✐

✐

✐

✐

✐

✐

Chapter 9 45

Chapter 9
Turing Machines

In the discussion of Turing machines in Chapters 9 and 10, I have changed
the manner of presentation to some extent, abandoning the theorem-proof
style of discussion in favor of more descriptive arguments. I believe this to
be necessary. Turing machines are too complex to be treated in full detail.
We cannot talk about them at the same level of detail as we did for, say,
finite automata without running into very lengthy and boring arguments
that obscure essential points. What I do here is to introduce the general
ideas (which are easy to understand), then present a number of motivating
examples to give the student some confidence that, in principle, everything
can be done precisely. Most students find this convincing; the exercises in
this chapter are intended to reinforce this conviction.

9.1 The Standard Turing Machine

The idea of a Turing machine is not a difficult one, and programming Turing
machines presents little difficulty to students who are often used to much
more challenging programming exercises. What is hard to deal with is the
tediousness of the job, and that it is very easy to make mistakes. The exer-
cises in this section are almost all conceptually simple, but many have very
lengthy solutions. They are useful for getting a better understanding and
to convince the students of the generality of the concept. The second issue,
which is the more important one, is not always so easily seen.

If students are asked to do any detailed programming of Turing ma-
chines, it is essential that they can check their answers easily. The only way
to do this is to have a Turing machine simulator. Exercise 1 asks that the
students write one, but if you elect not to do this, you should provide one
for general use. Several Turing machine simulators are available over the
Internet. I particularly like a software package called JFLAP. See Susan H.
Roger and Thomas W. Finley: JFLAP An Interactive Formal Language and
Automata Package, Jones and Bartlett, 2006.

1: If you do not have a Turing machine simulator, some ambitious student
may want to get extra credit for this exercise. Tracing Turing machine
programs by hand is not pleasant, so this is useful. Another point is
that such a program can be viewed as an implementation of a universal
Turing machine, an issue that is important in later discussions.

2: A three-state solution is

δ (q0, a) = (q1, a, R)
δ (q1, a) = δ (q1, b) = (q1, a, R)
δ (q1,�) = (q2,�, R)

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 46 — #46
✐

✐

✐

✐

✐

✐

46 Chapter 9

: with F = {q2}. With our definition of the language accepted
by a Turing machine, it is possible to solve this with two states.
Since the only requirement is that the first symbol of the input
be an a, a two-state solution is

δ (q0, a) = (q1, a, R)

with F = {q1}. The machine reads the first symbol and stops
either in a final or nonfinal state, depending on whether or not
the symbol read was an a.

3: A simple exercise in tracing the computation of a Turing ma-
chine. The exercise complements the discussion in Example 9.7.

4: No.

5: A simple problem, with answer L = L (ab∗ + bb∗a).

6: The Turing machine halts whenever a symbol not in {1,�} is
encountered.

7: All parts of the exercise are conceptually easy, but some of them
are rather lengthy.

8: A very tedious exercise, which can be solved by finding the
middle of the string first, then comparing the two halves. I
would accept an outline of the solution, since the details are too
messy. The exercise does show, however, that a Turing machine
can do something a pda cannot do.

9 to 11: These are lengthy, but straightforward exercises.

12: A simple exercise with a solution provided.

13: Good practice in providing some missing detail.

14: Routine exercise.

15 and 16: Just for filling in some missing detail.

17 and 18: Exercises that point out that a Turing machine transducer is
not tied to unary notation, but can handle more common num-
ber representations. The only thing that happens is that the
resulting machines tend to become large.

19: Something that needs to be pointed out.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 47 — #47
✐

✐

✐

✐

✐

✐

Chapter 10 47

20: The empty string is normally ignored in the discussion of the Turing
machines. We could include it by changing Definition 9.2 to require that
λ ∈ L (M) if and only if

δ (q0,�) = (qf ,�, R) .

Note that the empty string cannot be included by simply requiring that
q0 ∈ F , since the machine would then accept any string.

9.2 Combining Turing Machines for Complicated Tasks

In this section we explore the generality of the Turing machine and the ex-
ercises revolve around this exploration. Conceptually, the exercises present
no difficulty, since programming in pseudo-code is nothing new for most
students. The trouble with all of this is the usual one when working with
pseudo-code: what statements are permissible and how much detail do you
expect. I like this kind of exercise and usually do a few of them. But expect
the results to be hard to grade and some complaints from students who feel
that they don’t know what you expect.

9.3 Turing’s Thesis

1: Worth thinking about, but hardly something to do in detail.

2: A subtle point that will be resolved in the next chapter.

3: Not a standard exercise, but highly recommended. The article mentioned
is a good one and will increase students’ confidence in working with Tur-
ing machines. A review will make students synthesize and put material
in their own perspective. It also serves as a preview to later material.

Chapter 10
Other Models of Turing Machines

In this chapter we explore variations of the definition of a Turing machine.
As in Chapter 9, the discussion is more intuitive and discursive than rigorous
and complete. The exercises reflect this orientation; their main purpose is to
convince the student, by a consideration of several alternatives, that Turing
machines are indeed universal calculators.

10.1 Minor Variations on the Turing Machine Theme

These exercises explore variations that are occasionally encountered. The
answers to most of the exercises are easy to see and, if you accept solutions in
broad outline, not hard to answer. The important point here is the concept
of simulation, which is explored here in simple settings. Simulation is central
to the rest of the discussion in the text.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 48 — #48
✐

✐

✐

✐

✐

✐

48 Chapter 10

While even the simple simulations are too lengthy to do in full detail,
one aspect that can and should be made precise are definitions of various
alternative models. Most of the exercises involve this aspect.

1 to 4: These are all easy exercises, involving a formal definition and some
simple simulations.

5: Here we have a Turing machine with a more complicated tran-
sition function. The simulation is simple enough to describe in
detail.

6 and 7: In some arguments it is helpful to be able to claim that a Tur-
ing machine cannot create or destroy blanks. Such a restriction is
not essential since we can always introduce a new “pseudo-blank”
symbol in the tape alphabet. The simulation of a standard ma-
chine is straightforward.

8: Another variation that is sometimes convenient. The simulation is
done by putting any non-final halting state into an infinite loop.
The simulator then can be made to accept any language accepted
by a standard Turing machine.

9 to 11: Here are some unusual variations whose simulation is straightfor-
ward.

10.2 Turing Machines with More Complex Storage

1 to 4: These are exercises in producing formal definitions for some Turing
machine variants. Several slightly different definitions are possible,
but they all capture the essence. The simulations are not hard.
One or two of these problems are worthwhile for exploring different
Turing machine models and their equivalence.

5: A very difficult simulation. Even though the solution is sketched in
the book, it may be worthwhile for students to read and rephrase
the explanation.

6: A difficult exercise, because it involves inventing a trick. Most stu-
dents will see that the simulating machine can keep track of the
internal state of the original machine by putting the state number
on a separate track, something like

p0(internal state of simulator)

a b

qi

c d tape contents of original machine

internal state and head position
of original machine

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 49 — #49
✐

✐

✐

✐

✐

✐

Chapter 10 49

: The difficulty comes in simulating moves, say

δ (qi, b) = (qj , e, R) .

If the simulating machine uses just

δ (p0, (b, qi)) = (p0, (e, qj) , R)

then we end up with

p0

a b

qj

c d

10: instead of what we want:

p0

a b

qj

c d

To get the qj under the c, we use the following trick. Represent qi by i,
then transfer state information in steps as shown below:

a e c d

0 11 1 0

a e c d

0 0 111 0

a e c d

0 111 0 0

* *

Six states make it easy to remember what is going on (transferring qi

to left, transferring to right, etc.).

7: Once you see the solution to Exercise 6, this one is not so bad. By using
other tracks to remember what is going on, we can reduce the number
of required states. The details of the process are of course quite long.

8: A difficult problem, suitable only as an extra-credit, research-type of
assignment. For a solution, see Hopcroft and Ullman, 1979.

9: A fairly easy problem; the extra tape makes the simulation much easier
than the one in Exercise 6.

10: This exercise makes a point that is relevant in a subsequent discussion
of complexity.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 50 — #50
✐

✐

✐

✐

✐

✐

50 Chapter 10

10.3 Nondeterministic Turing Machines

1: The construction is sketched in the book, but there are a lot of details
to be considered.

2: We have to decide on a two-dimensional indexing scheme, then store an
element on one tape, with its address on a second tape. A complicating
factor is that no bound can be put on the length of the address. The
solution is not hard to visualize, but quite messy to implement.

3: The point of this exercise is that a nondeterministic solution is much eas-
ier. We guess the middle of the input nondeterministically, then compare
the two parts.

4: Nondeterministically choose the boundary between w and wR, then match
three symbols in each step. A deterministic solution is not much more
difficult to visualize—just divide the input into three equal parts.

5: The same point as Exercise 4. To solve this deterministically, we need
to try various values of |x| and |y|; this creates a nontrivial bookkeeping
chore.

6: Nondeterministically, guess a divisor a, then perform division. If there is
no remainder, accept the string.

7: The most interesting exercise in this section. It makes the point that two
stacks are better than one, but three are not better than two and thereby
answers a question raised in the preamble to Chapter 9.

10.4 A Universal Turing Machine

Most of the exercises in this section explore the notion of proper ordering
for various countable sets. The exercises should pose no serious difficulty for
anyone who understands the basic idea. The result that fractions can be put
into one-to-one correspondence with the integers is a little counter-intuitive
and may warrant some exploration. Exercises 7 to 9 serve this purpose.

10.5 Linear Bounded Automata

1: It is not hard to visualize a solution, but it takes some effort to write it
all down.

2: First, divide the input by two. The space released can then be used to
store subsequent divisors.

3: Since n cells can be in at most |Σ|n states, all of the tape contents can
be remembered by the control unit.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 51 — #51
✐

✐

✐

✐

✐

✐

Chapter 11 51

4: A set of relatively simple, but tedious exercises. If you accept
outline solutions, these should not cause any trouble. The full
details, on the other hand, are probably not worthwhile. The point
to be made is that all examples of this kind, even very complicated
ones, can be done with lba’s.

5: A full-scale solution would be very lengthy and is certainly not
worthwhile, but students can build on the discussion in Example
10.5. The key is that the algorithm for this example can be made
deterministic so that it terminates for all inputs. When a halting
configuration is reached, we simply “complement” the acceptance,
which gives an lba for the complement of the original language.

6 and 7: These exercises close a gap in our arguments, showing that a pda
is less powerful than an lba. The argument can be difficult. The
easiest way is an indirect approach, using several established re-
sults. We start with a context-free grammar, then use Exercise 16,
Section 6.2, to argue that there exists an equivalent grammar in
two-standard form. If we then repeat the construction of Theorem
7.1 with this two-standard grammar, we get a pda in which each
move consumes an input symbol and never increases the stack
content by more than one symbol.

8: We can find deterministic solutions for all cases. This exercise
hints at the question “Are deterministic lba’s equivalent to non-
deterministic ones?” This is an open problem.

Chapter 11
A Hierarchy of Formal Languages and Automata

Chapters 9 and 10 contain material that, although technical and often te-
dious, is easily visualized and therefore presents few conceptual difficulties.
In Chapters 11 and 12, the concepts become more difficult. Working with
uncountable sets and diagonalization is hard for students who have only
a very superficial grasp of the arguments. While most of the exercises in
this chapter have short answers, many students will find them difficult. The
underlying ideas are not very concrete and some students may not know
where to start. The subject matter is often considered graduate material,
so it is not always easy for undergraduates.

11.1 Recursive and Recursively Enumerable Languages

1: This is the classical problem of Cantor. We represent real numbers as
decimal expansion, then diagonalize this representation.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 52 — #52
✐

✐

✐

✐

✐

✐

52 Chapter 11

2: A short argument that may be hard to discover.

3: First list all elements L, then all elements of L2, etc.

4: Use the pattern in Figure 11.1 to list wij , where wij is the i-th
word in Lj . This works because each Lj is enumerable. Contrast
this solution with that of Exercise 3.

5: If L were recursive, then
(
L

)
would also be recursive, and there-

fore recursively enumerable.

7: Yes. Use M1 and M2 as in the solution of Exercise 6. Let M1

execute one move, then M2 one move. After that, we let M1 ex-
ecute its second move, followed by the second move of M2, and
so on. If one machine accepts the input, the other can proceed
normally; if one machine reaches a configuration indicating that
the input is not accepted, the computation can be terminated.
The resulting machine accepts any w ∈ L (M1) ∩ L (M2).

8: The same idea as in Exercises 6 and 7, except that the resulting
machine always halts.

9: Start by reversing input w, then run the Turing machine with
input wR.

10: Yes. Nondeterministically split w into w1w2 such that w1 ∈ L1

and w2 ∈ L2. The Turing machine for L1 will halt when given
w1; then let M2 operate on w2.

12: Observe that L2 −L1 = L2 ∩L1. But L2 and L1 are recursively
enumerable, so that the result follows from Exercise 7.

13: Since proper order means increasing length, we let the Turing
machine generate all strings of length up to |w|. If we find no
match, we can stop and claim that w is not in the language.

15: This looks like a rather vague problem, but one can get a decent
answer. It demonstrates that, although L is not recursively enu-
merable, we can still find elements of it. For example, suppose
we choose an ordering in which M2 is defined by

δ (q0, a) = (q0, a, R) .

Clearly, L (M2) = ∅, so that a2 /∈ L (M2). Therefore, a2 ∈ L.

16 and 17: These are good exercises for exploring countable and uncount-
able sets. Both proofs are fairly easy if a contradiction approach
is used.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 53 — #53
✐

✐

✐

✐

✐

✐

Chapter 11 53

19: Simple, but good exercise in reasoning with countable and uncountable
sets. If the set of all irrationals were countable, then its union with the
rationals, i.e., the set of all real numbers, would be countable.

11.2 Unrestricted Grammars

2: Even in an unrestricted grammar, the number of nodes at each level of
the parse tree is supposed to be finite. Allowing λ on the left side of a
production would destroy this property.

3: This is fairly easy to see. The answer is given.

4: The main point of the argument is that although we can generate vari-
ables such as Vbb and from it derive Vb0b, no terminal string can be
derived from the latter. This is because no b occurs in the transitions
(11.8) and (11.9).

5: Fill in the details.

6: Straightforward, but tedious. A drill exercise to test understanding of
the construction of Theorem 11.7.

8: Another normal form. When necessary, introduce new variables. For ex-
ample

ABC → XY Z

can be replaced with

BC → D

AD → XW

W → Y Z.

The equivalence argument is not hard.

9: A simple construction once you get the idea. Whenever a production has
only terminals on the left, say

a → x,

we introduce a new variable Va and replace every a in P by this variable.
To get rid of it eventually, we add Va → a to the productions.

This exercise illustrates that in unrestricted grammars the distinction
between variables and terminals is blurred. Terminals can be changed,
although the final sentence must be composed entirely of terminals.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 54 — #54
✐

✐

✐

✐

✐

✐

54 Chapter 11

11.3 Context-Sensitive Grammars and Languages

Finding context-sensitive grammars for languages that are not context-free
is almost always difficult. The answers are not easy to see, and particular
grammars are hard to verify. Only in a few instances can reasonably concise
plausible results be obtained from first principles. In many cases, students
will find it easier to construct an lba first, then obtain the corresponding
grammar by the construction in Theorem 11.9. The languages in Exercises
1 and 2 are manageable, but don’t expect them to be easy. A variation
on these exercises is to give the answer, asking students to give convincing
reasons why the grammar works.

1: (a) and (b) are easiest, because we can follow the pattern established in
Example 11.2.

(d) We give only an outline. We can start with

S → aXaY |bXbY.

The variable X then creates some new symbol and a messenger to the
right, say by

aX → aaXa.

When Xa meets y, it creates an a and another messenger to the left. The
details, although lengthy, follow along the lines of part (c). The solved
part (c) can be used as an additional guide.

For (e), the messenger idea can be used. An answer is

S → aAd

A → bBc

B → λ

bB → Bb

aB → aaC

Cb → bC

Cc → bDc

Dc → cD

Dd → cEdd

cE → Ec

bE → bB

2: The answers tend to be quite long, but the solution can be made easier
by using variables subscripted with the terminal they are to create. For

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 55 — #55
✐

✐

✐

✐

✐

✐

Chapter 12 55

example, Vab needs to create an a and a b somewhere. For part (a), we
use the start variable Vabc, and introduce productions like

Vabc → abc |bca| · · · |VabcVabc

Vab → ab |aVb| bVa| · · · .

This keeps track of the right number of symbols of each kind, but does not
take care of the requirement that the symbols can be created anywhere in
the string. For this latter requirement, we allow interchanging of variable
subscripts, for example

VbcVabc → VabcVbc

with similar rules for all other subscript permutations. To see how this
works, consider the derivation of aabcbc:

Vabc ⇒ VabcVabc

⇒ aVbcVabc

⇒ aVabcVbc

⇒ aaVbcVbc
∗⇒ aabcbc.

3: An easy argument. Add to the sets of productions S → S1|S2, where S1

and S2 are the two start symbols.

4: Not hard, with a solution provided.

5: A simple counting argument

m (|w|) = |V ∪ T ||w|
.

6: A reasonable exercise with a given solution.

11.4 The Chomsky Hierarchy

A somewhat general set of exercises that is useful in making the students
review the relation between the various language families.

Chapter 12
Limits of Algorithmic Computation

The problems in this chapter have characteristics similar to those in Chapter
11. They often have short answers, but they are conceptually difficult and
students often have trouble making coherent arguments. It is easy to come
up with reasoning that is incorrect or incomplete.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 56 — #56
✐

✐

✐

✐

✐

✐

56 Chapter 12

12.1 Some Problems That Cannot Be Solved by Turing Machines

1: A very straightforward problem. We can add, for instance

δ (qy, a) = (qa, a, R)
δ (qa, a) = (qb, a, R)
δ (qb, a) = (qa, a, L)

for all a ∈ Γ.

2: A deeper examination of a point treated casually in Theorem 12.1. One
need not go into great detail to see that we can always modify the Turing
machine so that it saves w first. Then, when it halts, it erases everything
except w. The argument in Theorem 12.1 is unaffected by any of this, or
by any other possible changes in Definition 12.1.

Exercises 3 to 10 rework the basic halting problem, in a way similar to
what was done in Examples 12.1 and 12.2. Some students will at first have
difficulty, but the more of these they do, the easier it gets.

4: This is an instructive exercise that points out that, even if we restrict
the requirements, the halting problem is still undecidable.

Suppose we have an algorithm A that for any given M̂ , but a fixed ŵ,
can decide if

(
M̂, w

)
halts. Then take any (M,w) and modify M so

that whenever it halts it checks its input and goes into an infinite loop
if this input is not ŵ. This is our M̂ ; we see that

(
M̂, w

)
halts if and

only if (M,w) halts and if w = ŵ. Now give
(
M̂, ŵ

)
to A. If A says

that this halts, so does (M,w) and vice versa. We have constructed a
solution to the original halting problem.

5: Given (M,w) we can modify M to M̂ so that if (M,w) halts, M̂ accepts
any input. So

M̂ accepts all input implies (M,w) halts

M̂ does not accept all input implies (M,w) does not halt

Again we have a solution to the halting problem.

6: Write a special symbol in the starting cell, then use the results of Ex-
ercise 3.

8: The conclusion is unaffected because as M2 we can always take a finite
automaton that accepts {a}.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 57 — #57
✐

✐

✐

✐

✐

✐

Chapter 12 57

9: Yes, this is decidable. The only way a dpda can go into an infinite loop is
via λ-transitions. We can find out if there is a sequence of λ-transitions
that (a) eventually produce the same state and stack top and (b) do
not decrease the length of the stack. If there is no such sequence, then
the dpda must halt. If there is such a sequence, determine whether the
configuration that starts it is reachable. Since, for any given w, we need
only analyze a finite number of moves, this can always be done.

11: Although the function is not computable, we can still find values for
some arguments. It is easy to show that f (1) = 0. Since q0 is the only
state, we cannot have δ (q0,�) defined; otherwise the machine never
halts. To compute f (2), note that δ (q0,�) must be defined so that a
move to state q1 can be made. But q1 need not be a final state because
the machine can halt via undefined transitions. We can then enumerate
all possible moves that can be made without repeating a configura-
tion, before this undefined transition is encountered. For example, we
can have δ (q0,�), δ (q1,�), δ (q0, 1), δ (q1, 0) and δ (q0, 0) defined, and
δ (q1, 1) undefined. Then we can make no more than five moves before
repeating a configuration. Other options lead to similar results, and we
see that f (2) = 5.

12: Given (M,w), modify M to M̂ so that M̂ accepts its input only if it is
w. Therefore
(M,w) halts implies that M̂ accepts some input (namely w)

(M,w) does not halt implies that M̂ accepts nothing
and we have a solution to the halting problem.

14: A simple counting argument based on all the different values that can
be taken by i, j, a, b,D in δ (qi, a) = (qj , b,D). Note that δ (qi, a) may
also be undefined. From this we get

m (n) = n |Γ| (2n |Γ| + 1) = 18n2 + 3n.

15: Very similar to Example 12.3 and should not be hard for those who
grasp the idea involved there. The maximum number of moves that can
be made without repeating a configuration is a bounded function of
b (n).

16: This is worth pointing out.

12.2 Undecidable Problems for Recursively Enumerable
Languages

1: The construction, like many similar ones omitted in the text, is not hard
to see, but it takes some effort to spell it all out in detail.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 58 — #58
✐

✐

✐

✐

✐

✐

58 Chapter 12

2: These are two special instances of Rice’s theorem. This should not be
too hard for anyone who understands the construction of Theorem 12.4.
For example, in (a), modify the original machine so that, whenever it
halts, it accepts some string of length five.

4: A trap for the unwary: an algorithm is trivial since L (G)R is always
recursively enumerable. Inevitably, there are a number of students who
will produce a very complicated “proof” that this is undecidable.

5: Contrast this with Exercise 4. This is undecidable in consequence of
Rice’s theorem.

6: A solved problem with a simple answer.

7: Again, the same type of argument as in Theorem 12.4 and Example 12.4
(i.e., a version of Rice’s theorem), but there are several steps involved
that make the problem a little more difficult.

(a) Start with the halting problem (M,w).

(b) Given any G2 with L (G2) 	= ∅, generate some v ∈ L (G2). This
can always be done since G2 is regular.

(c) As in Theorem 12.4, modify M to M̂ so that if (M,w) halts, then
M̂ accepts v.

(d) From M̂ , generate G1 so that L
(
M̂

)
= L (G1).

Now, if (M,w) halts, then M̂ accepts v and L (G1) ∩ L (G2) 	= ∅. If
(M,w) does not halt, then M̂ accepts nothing, so that L (G1)∩L (G2) =
∅. This construction can be done for any G2, so that there cannot exist
any G2 for which the problem is decidable.

12.3 The Post Correspondence Principle

1: An easy exercise that helps students understand what is meant by a
solution of the Post correspondence problem.

2: A straightforward but somewhat lengthy inductive argument.

4: In contrast to Exercise 3, this is no longer decidable. This follows from
the fact that any alphabet can be encoded with the two-symbol alphabet
{0, 1}.

5: These are some minor variations of the Post correspondence problem. In
part (a), it follows directly from Theorem 12.1 that this is not decidable.
We can have a solution with w1, v1 on the right if and only if there is one
with w1, v1 on the left. (b) This is also undecidable. If it were decidable,

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 59 — #59
✐

✐

✐

✐

✐

✐

Chapter 13 59

we could, by trying all possible strings as w2 and v2, get a solution for
the modified Post correspondence problem.

6: Take the standard Post correspondence problem with A = (w1, w2, ...)
and B = (v1, v2, ...). Construct A′ = (§, w1, §, w2, ...) and B′ = (§, v1, §,
v2, §, ...), where § is some new symbol. Then (A′, B′) has an even PC-
solution if and only if the original pair has a PC-solution.

12.4 Undecidable Problems for Context-Free Languages

There are many undecidable problems for context-free languages and this
has some practical importance. The exercises in this section give the inter-
ested student a chance to explore this issue beyond the very limited treat-
ment given in the text. Unfortunately, most of this is quite difficult and
probably should not be given to the average student. For those who wish to
tackle more advanced material, this may be suitable. The arguments, many
of them lengthy and difficult, can be found in the literature to which we
refer.

1: Perhaps the only simple question in this section. Note that each
ai occurs only in two productions: SA → wiSAai and SA → wiai

and that GA is linear. Thus, as long as we do not terminate the
derivation, we have only one choice for the production at each step,
determined by the right-most appropriate symbol of the sentential
form.

2 to 5: Arguments using the Post correspondence problem can be found in
Salomaa, 1973, p. 281.

6 to 8: See Hopcroft and Ullman, 1979, p. 201.

12.5 A Question of Efficiency

This short section is preparation for the complexity study in Chapter 14.
Since Exercise 1 is solved, Exercise 2 should not be hard.

Chapter 13
Other Models of Computation

13.1 Recursive Functions

1: A routine drill exercise.

Exercises 2 to 7 are instructive as they show the (laborious) way in which
complicated functions can be built up from the simple primitive recursive

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 60 — #60
✐

✐

✐

✐

✐

✐

60 Chapter 13

ones. But until students have some experience with this, the exercises are
likely to be difficult.

3: We can use the primitive recursive functions defined in Examples 13.2
and 13.3 to get

equals (x, y) = mult (subtr (1, subtr (x, y)) , subtr (1, subtr (y, x))) .

4: Using the results of Exercise 3, we can write

f (x, y) = mult (x, subtr (1, equals (x, y))) .

5: The hardest problem in the set. If we define a function nequals as the
complement of equals in Exercise 2, we can write recipes for rem and
div, as

rem (0, y) = 0
rem (x + 1, y) = (1 + rem (x, y)) ∗ nequals (rem (x, y) + 1, y)

div (0, y) = 0
div (x + 1, y) = div (x, y) + equals (rem (x, y) + 1, 0) .

It is not too hard to rewrite this to be consistent with the notation and
requirements of primitive recursive functions.

6: The section’s one easy problem for primitive recursive functions.

f (0) = 1
f (n + 1) = mult (2, f (n)) .

Exercises 8 to 14 deal with the classical Ackerman function. An experimental
look at Ackerman’s function has some interest to students; the rapid growth
one can get out of such an innocent-looking recursion is impressive.

8: An easy exercise that can waste a lot of computer time.

9: Fairly straightforward, but involves induction.

10 and 11: From the definitions of A and part (c) of Exercise 9, we get
A (4, 0) = 16 − 3, A (4, 1) = 216 − 3 and A (4, 2) = 2216 − 3. A
general result can then be established by induction. For details,
see Denning, Dennis, and Qualitz, 1978.

12: Routine, but tedious.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 61 — #61
✐

✐

✐

✐

✐

✐

Chapter 13 61

13: To show that Ackerman’s function is total on I × I we must show that
the recursion leads to the escape A (0, y) = y + 1, for all x and y.
Examining the definition, we see that in each recursive call either x or
y is reduced by one. The recursion can therefore not loop indefinitely,
but must terminate.

14: It is instructive to see how quickly the program comes to a halt with
something like a “stack overflow” message.

15: Not hard, but useful for getting a better grasp of the µ operation.

16: To bring this in line with the definitions of a primitive recursive func-
tion, we can write something like

pred (x, y + 1) = p1 (y, pred (x, y)) .

13.2 Post Systems

1: A set of reasonably easy exercises. Some of them illustrate that it is
often more convenient to work with Post systems than with unrestricted
grammars.

(a)

A = {b, ac}
V1b → aV1b|b

aV2c → abV2c|ac

(c)

A = {λ, abc, aabbcc}
V1abV2bcV3 → V1aabV2bbccV3.

2: Fairly straightforward:

V1xV2 → V1axaV2|V1bxbV2.

4: By a simple analogy with Exercise 3

L =
{

(a)2
n

: n ≥ 1
}
∪

{
(ab)2

n

: n ≥ 1
}
.

6: An easy fill-in-the-details exercise.

7: It is not hard to generate a few elements of the language and to see the
pattern, but a description in set notation looks extremely complicated.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 62 — #62
✐

✐

✐

✐

✐

✐

62 Chapter 13

8: We can always introduce dummy variables to equalize the number, with
the intent of identifying these dummy variables with the empty string.
One must be careful, however, that we arrange matters so that these
dummy variables cannot be identified with anything else. For example,
if in Exercise 2 we just replace

V1 → V1V1

with

V1V2 → V1V1

we change the language. Try instead

V1xV2 → V1V1x

with x some nonterminal constant that is eventually replaced by λ.

13.3 Rewriting Systems

2: Easy answer: L =
{
anb2nan

}
.

3: The empty set, since S2 can never be reduced to a terminal.

4: abab ⇒ Sab ⇒ SS ⇒ λS, and the derivation terminates.

6: A very difficult problem. We sketch a solution that employs a kind of mes-
senger system often encountered with context-sensitive and unrestricted
grammars.

In the first step, we annihilate a ba pair, replacing it with a symbol x that
will later become a b again. This is done with the production ba → x.
The x is then moved to the left end of the b string by bx → xb. In order
to do this before the next ab pair is changed, the second production must
be put before the first. The two rules will generate the derivation

anbmanm ∗⇒ anxma(n−1)m.

Next, we remove an a and rewrite x as b by

ax → ux

ux → bu

u → λ

resulting in

anbmanm ∗⇒ anxma(n−1)m ⇒ an−1bma(n−1)m,

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 63 — #63
✐

✐

✐

✐

✐

✐

Chapter 14 63

and starting another round by eliminating a ba substring. We still need
to provide productions to remove the b’s at the end; this is done with
b → λ. If the input is acceptable, the derivation will end with the empty
string; if not, something will be left.

7: A simple answer: a → a, a → aa.

8: This is a solution to Exercise 7.

Chapter 14
An Overview of Computational Complexity

14.1 Efficiency of Computation

These simple questions belong in a course on algorithms and here serve as
a bridge to such a course.

14.2 Turing Machine Models and Complexity

1: Count the length of the string, then divide by 2. Write the second part
of the input on the second tape, then compare. All of this can be done in
O (n) time. For a one-tape machine, the best one can expect is O

(
n2

)
.

2: To tackle this problem, we have to start with a precise definition of how
an off-line machine handles the input. If one assumes that each move
of the Turing machine consumes a symbol from the input file, handling
the input will be done after n moves, so this part does not do anything
significant to the overall processing time.

3: For each move of one, the other makes one move also and there is no
extra time in searching for the right place. The only extra effort for a
semi-infinite tape is the bookkeeping when we switch from one track to
the other, but this does not affect the order of magnitude argument.

4: (x1 ∨ x3) ∧ (x2 ∨ x3).

5: Yes. x1 = 1, x2 = 1, x3 = 0 is one solution.

6: The argument for this case is substantially the same as the argument for
Theorem 14.1.

7: This addresses the kind of fine point that is often ignored. The answer
is in the solutions section.

✐

✐

“46070˙XXXX˙LinzIM” — 2011/1/14 — 15:44 — page 64 — #64
✐

✐

✐

✐

✐

✐

64 Chapter 14

14.3 Language Families and Complexity Classes

1: Straightforward, fill-in-the-details exercise.

2 and 3: Here we continue the idea suggested in Exercise 1, Section 14.2. To
divide input into three equal parts, scan it and produce a marker
for each third symbol. The number of markers then determines
the value of |w| /3.

4: Follows directly from Theorem 14.2.

14.4 Some NP Problems

1-4: These exercises ask students to provide some omitted detail and require
close reasoning.

5: A simple induction will work.

6: Easy to find a 4-clique. To show that there is no 5-clique, use Exercise
5.

7: Again students are asked to provide some omitted details.

8: This is not hard if the concepts are well understood. For union, check
if w ∈ L1. This can be done in polynomial time. If necessary, check if
w ∈ L2.

14.5 Polynomial-Time Reduction

The problems in this section are not hard, but require arguments with a lot
of detail.

14.6 NP-Completeness and an Open Question

1: Follows from Exercise 5. Section 14.6.

2: Hard for students who have not see this before, but the answer is easy:
each vertex must have an even number of impinging vertices.

4: A good problem for finishing the discussion.

